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The planar fishnet theory and its generalisations admit very few Feynman
diagrams, which have a regular (square-lattice) structure. This can be
used to

» solve these theories,

» understand the origin of their integrability,

» understand the origin of their holographic dual,

» gain insight into richer theories, e.g. NV =4 SYM,

» (in)directly compute individual Feynman integrals.
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We work in the planar limit N. — +oo.
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Integrability through Graph-Building
Operators



Graph-Building Operators

<Tr(ZJ(x))Tr(ZTJ(y))> > 1+ ¢y @ + &Y



Graph-Building Operators

(T(Z2 () TH(ZP(y))) & L+ g @ gy -

Two graph-building operators: direct channel v mirror channel

In principle, the integrals can be computed through the diagonalisation of
either of these operators.



Transfer Matrix = Direct-Channel Graph-Building Operator

T2 (4) = Tro (Roa (1) - - - Ros(u)) .

.

Yang-Baxter for the R-matrix = [T v)] = 0



Transfer Matrix = Direct-Channel Graph-Building Operator

T () = Tro (Roa(u) - - - Ros(u)) .

.

Yang—Baxter for the R-matrix = [T ), T v)] = 0

Taking Ag=dand Ay =---=A ;= 5, one observes that
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[Giirdogan and Kazakov (2015)][Gromov, Kazakov, Korchemsky, Negro, and Sizov (2017)]



The 2-point function is essentially reduced to the computation of

400 . 1
> GMH = 20,
M=0 1- 51 H,

Eigenvectors of ﬁ_j with eigenvalue E = ¢~2/ represent primary operators
of the fishnet theory (and their descendants). This is given by the
representation of the conformal group (A(&?),¢,€) under which the
eigenvector tranforms.



When J = 2, one can compute exactly
(Tr[Z(x1)Z(x2)] Tr [Z‘L(X3)ZJr (xa)])
and extract from it (exact) conformal dimensions and OPE coefficients.

Physical states correspond to symmetric traceless tensors of arbitrary
rank ¢ > 0; their dimensions are

Ag,izz-f—\/(£+1)2+1i2\/(€+1)2 + 484,




When J = 2, one can compute exactly
<Tr[Z(x1)Z(X2)] Tr [Z‘L(X3)ZJr (X4)] >

and extract from it (exact) conformal dimensions and OPE coefficients.
Physical states correspond to symmetric traceless tensors of arbitrary
rank ¢ > 0; their dimensions are

Ag,izz-f—\/(£+1)2+1i2\/(€+1)2 + 484,

For arbitrary J, not completely solved.



Application: Periods of Zigzag Graphs

m mx
0 M=6 * 0 M=7

1 4 (2M —2 _
e M< M—1 ) [1—-272M(1 = (=1)")] Cam—3
Conjectured in 1995 [Broadhurst and Kreimer (1995)]
Two proofs:

» single-valued multiple polylogarithms, graphical functions
[Brown and Schnetz (2012)]

» J = 2 graph-building operator [Gromov, Kazakov, and Korchemsky (2018)]
[Derkachov, Isaev, and Shumilov (2022)]



From Fishnet to NV = 4 SYM



Comments and Shortcomings of the Fishnet Theory

» The previous results are exact. In particular, for J =2 and £ =0,

Do =2+1/2—-2y/1+44 =2+2i2 4+ 0(¢)

is the exact dimension of Tr(ZQ). Reproducing the perturbative
expansion requires to take into account the counter-terms.
We did not need them!



Comments and Shortcomings of the Fishnet Theory

» The previous results are exact. In particular, for J =2 and £ =0,

Do =2+1/2—-2/1+44=2£2i¢ + 0(¢Y)

is the exact dimension of Tr(ZQ). Reproducing the perturbative
expansion requires to take into account the counter-terms.
We did not need them!

» On the other hand, Ag . is the dimension of Tr(ZOZ) + ... which
we do not know exactly because there is mixing.



» One finds only two operators for each ¢; this means that many
operators are protected in the fishnet theory.



» One finds only two operators for each ¢; this means that many
operators are protected in the fishnet theory.

» The fishnet theory is a logarithmic CFT: the dilatation operator is
not diagonalisable.



» One finds only two operators for each ¢; this means that many
operators are protected in the fishnet theory.

» The fishnet theory is a logarithmic CFT: the dilatation operator is
not diagonalisable.

» Neither fermions nor gauge boson in the fishnet theory.

How can one incorporate back these protected or logarithmic operators?



New Double-Scaling Limits

[Ferrando, Sever, Sharon, and Urisman (2023)]

Operator-dependent limit:
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Example: for Tr(ZF), one must take n = 2 and the only diagrams that
remain are

Tr(ZF)




New Double-Scaling Limits

Operator-dependent limit:

i3

g
&=

e 500, g—0, = fixed

26—

82
Example: for Tr(ZF), one must take n = 2 and the only diagrams that
remain are

Tr(ZF)

Following the procedure outlined previously, we find that

Aq 24 4/5—4y/1+¢8.
Tr(F2) gﬁO?fixed + +&



General Situation: Mixing

If we turn to longer operators, such as Tr(FZ”) for J > 1, then
n=1+1/J.

But there is some form of mixing with Tr(XX'Z”) (same double-scaling
limit) and Tr(Z7) (fishnet limit).

The relevant graph-building operator is a 3 x 3 matrix. We will show that
it is integrable.



A Short Operator: Tr(FZ)

F = = £ DA



Feynman Diagrams

Double-scaling limit:
e 17
e ™ oo, g0, &= gT fixed .

Relevant interactions:

— i Neg Tr(9, XT[A*, X] + 0, X[A*, XT])
2N.g? Tr(XTA,XA") . and 2N.g?e " Tr(X1Z1XZ).

Typical diagram: S




Graph-Building Operator

Ha depends on the gauge:

Q0Q0Q
QQQ + T2
T X2 + X1 Z1
QOO
T2



Graph-Building Operator

Ha depends on the gauge:

'.’
To + 1 + Ty
.’Q

However, there exists a gauge-independent operator Hr acting on
antisymmetric tensors Wi and such that: if V& = 95V — 95V, then

[Aewe] ™ = o5 [Aawa]” — oy [Aava]” .

= (Tr(ZF)(x) Tr(ZTF)(y)) is gauge-independent in the double-scaling
limit.



One can invert ﬁp:
-1 mv 1 w4 P v
{HF \UF} =16 (x0T 05V e Y — (n <> v)) .
Eigenvectors are fixed by the conformal covariance of the operator:

three-point functions involving a scalar of dimension 1 and a rank-2
antisymmetric tensor of dimension 2.



Spectrum:
> (Ap+,t,0) for £ > 1 with

Dpe =24 /((+1)2£48.



Spectrum:
> (Ap+,t,0) for £ > 1 with

Dpe =24 /((+1)2£48.

> (A} 4 L+ 2,0)® (A) 4, L, £ +2) for £ >0 (tensors with £+ 2
indices and mixed symmetry) with

A%,i:2+\/(€+2)2+1j:2 (€ +2)2 4 4¢8 .



Spectrum:
> (Ap+,t,0) for £ > 1 with

Ag’i:2-‘r (g—l— 1)2i4§§.

> (A} 4 L+ 2,0)® (A) 4, L, £ +2) for £ >0 (tensors with £+ 2
indices and mixed symmetry) with

A%,i=2+\/(4+2)2+1i2 (0+2)2 +4¢5.

The dimension of Tr(ZF) is Aj _.



Other Short Operators

We performed a similar analysis for the following operators:

Tr(XX'Z) and Tr(X'XZ) = n=2

Tr(aZ) or Tr( IZ) = n:%
4

Tr(12Z) or Tr(¢;z> —n=

Z2 T




Mixing Between Operators and Between
Scaling Limits

o = = = T 9ac



Fishnet Contributions

We focus on Tr(Z’F) and Tr(Z/XXT) for J > 1.
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We focus on Tr(Z’F) and Tr(Z/XXT) for J > 1.

Let us consider the 2-pt function (Tr(Z/F)(x) Tr((Z")’F)(y)). When
e~ 17 — 400, the dominant contributions are
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Fishnet Contributions

We focus on Tr(Z’F) and Tr(Z/XXT) for J > 1.

Let us consider the 2-pt function (Tr(Z/F)(x) Tr((Z")’F)(y)). When
e~ 17 — 400, the dominant contributions are

But Tr(Z7F) is absent from the fishnet theory, so more graphs need to
be taken into account.



Mixing

There is still an iterative structure: the graph-building operator is

actually a matrix 7 with one row (and one column) for each state that
participate in the mixing.

In our case, there are 3 intermediate states: Tr(Z7), Tr(Z/F) and
Tr(Z/XX1).



‘H is defined such that 2-point functions are essentially matrix elements

f 1
oA

Example:
(Tr(A*(x0)Z(x1) - - - Z(xs)) Tr(ZT(zJ) . ZT(zl))>

n
1
i /<X07X17 ’XJ|(17H)A@ |)/1> 7YJ> Hi:1d4yi
(

4m2 [ (vi — 21)? 2!

2

The problem is still to diagonalise H, and physical states correspond to
those with eigenvalue equal to 1.



Double-Scaling Limit

)
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a2 fixed
T

e”'™ 200, g0, &=

Each matrix element scales differently:
o g 2Hoo & Hoa & Hox
H=28"1); _1HAQ) Han Hax
g Hxy  Hxa Hxx



Double-Scaling Limit

)
g2 e i

a2 fixed
T

e”'™ 200, g0, &=
Each matrix element scales differently:

o oo g7 %Moy & 'Hoa & ‘Hox
=& _1HAQ) Han Hax
g Hxo  Hxa Hxx

Some eigenvalues will diverge, some will go to zero. We focus on those
which remain finite:

HV =EV, with E=E+0(g), E#0.



Effective Spectral Problem

At leading order, only the above 3 x 3 submatrix is relevant. Writing

WQL()(X]_, s 7XJ)
V= \UZ,O(XO’X]J"'?XJ) +O(g)=
Wx o(x0, X1, - -5 XJ)

we get Wy g =0 and

20D VEo) _ g (VYro
1+1/J Uy o 0 Uy o
for \U‘,if’o = 86“412’0 — Bglllﬁ’o, and some 2 X 2 matrix 5% depending on all

9 matrix elements of .



9 =My — HiHooHo;,  (i,)) € {A X}
is a complicated matrix of integral operators but it is local and gauge
invariant (contrary to /). As an example:

= 000 2 d% Wx(o, .-,y
[5FX“’X} (0,x0, - xj) = —— —
4 oo ™ Tlimetq —¥i)?vf i
a4z (xo — y0)? [ 1 0.5 vZo(z — y))? B y3o(z — y1)?
w2 (x —2)2 l2(z = y1)2(z — y))? (z - v0)? (z - ¥0)?

(9'(}/_/—1)70'(}/1—1))( v3o . ¥ B v2, )]
vy — 2?2 (1 — 22 (z-7)2E-y)?2 (-y)2E-3w?2 (@-nPe-y?/]’

——e1
+ — 32 e00000 %1

—4y,




Surprisingly, $ has a relatively simple inverse:

0. .
N 6 - 8o x3px2y Do - 89 20 8p (Lxe — %0 252
F J0X10 2 2 Jo
= o
- 90 x5-0@\ 2 2 0 2 .2 au
2 (Xullzo - 7“;2 XJj0X10 80 . 8( ) 80,# XjoX10 80 + 8 x10 * XJ0
Jo
J—1 2 J
% Hi:1 Xiit+1 Hi:1 Ui
(—4)7+1 ’

where 6# is a polarisation vector such that {6*,6"} = 0. It encodes the
tensor structure: WA — W = 0¥V .



Integrability

We can construct a transfer matrix
T(u) = trs (LY ()50 W) - 1§ (w)

such that R
T(O) — (—1)J+1f)_1 )



Integrability

We can construct a transfer matrix
1,0,0 1,0,0
T(u) = tro (LY (LG w) - L§,°(w))
such that R
T(O) — (—1)J+1f)_1 )
We have checked that the 6 x 6 Lax matrices are solution to the RLL

equation

Ruz(u — V)L ()L (v) = LY (LY (u)Ria(u — v),

) s

where Ryz(u) is the usual O(5,1)-invariant R-matrix.



The Lax matrices for sites 1,. .., J are the usual ones for scalar
representations:

1
L(\}j/,’(,i,)(u) = U2’I7MN — u(YM8yN — YNayM) — EYM YOy .

Embedding space: 1 < M < 6, metric N = diag(1,1,1,1,1, 1), and
YMYM =0.



But the representation at site 0 is reducible
Po = [e : 8\’(17 la 1)] D (2v Oa O)
——— ——
F xxt
and the Lax matrix appears to be new:

LYo (u) = i — uqlfR) + Ly

where the conformal generators are

(po) __ [ YMOyn — YnOym + Opn0gn — OnOgm 0
dun = 0 YiOyn — YnOym

and the operator Ly is

1 <[(e.ay) YMYN 9y - Do) (©-9y) [YVON — YVeM] ) .

MN .+
Ly =3 YNod — YMog] (0v - 0e) 1 [YMOyYN+ YOy YM] 4 2p™Y



Mirror Channel and Separation of Variables



Diagonalisation of the Mirror Graph-Building Operator

Ay is part of a commuting family of open-spin-chain operators. The
kernels of these integral operators are

X3 g X3 Y3
<L %
5 V3 5
)
Xz X2
§ Y2 —_— s
8
u=is s
x X
8 N )

Xo Xo

Clear (spin-chain) interpretation in dimension 2: the eigenvectors form a
basis of separated variables.
[Derkachov, Korchemsky, and Manashov (2002)] [Derkachov and Manashov (2014)]



If § € iR, then the operators act on L2(RY)®N_ We will perform the
analytic continutation to 0 < § < g at the end.

When N = 1, the eigenvectors |, C) are parametrised by
7= (u,l) € R xNand C, a symmetric traceless tensor of rank /:

<X|J7C>: X2(%+g—lu)
A‘UC>7r(é)r(%—k%-l-iu)r(%—i-%—iu)‘L_I'C>
H M) (4 + 52 i) (4452 —jy)




For higher N, the eigenvectors are parametrised similarly,
c

——
|dy, ..., 0n; G ® -+ ® Cu), and the eigenvalues are simply HkN:1 s (uk).

@, a8, 08)

xél) = xéz) = x(()3) =0



Symmetry

For any permutation 7,
|L71, ey LTN; C) = ‘le—l(l), ey LTT—I(N);S(J:[, ey LTN;T)C> y
where the S-matrix factorises into products of 2 — 2 scattering governed

(up to a phase) by the relevant O(d, C)-invariant R-matrix R ;- (u — v’)
(solution to Yang—Baxter).



Symmetry

For any permutation 7,
|L71, ey LTN; C) = ‘le—l(l), ey LTT—I(N);S(J:[, ey LTN; T)C> y

where the S-matrix factorises into products of 2 — 2 scattering governed
(up to a phase) by the relevant O(d, C)-invariant R-matrix R ;- (u — v’)
(solution to Yang—Baxter).

This required new, explicit representations for the R-matrices for arbitrary
spins. For example,

[Ryn(u)G @ Gl (x,y)

Z2(iu+i52-1) Gy —v)G(x —v) d9zd9v
x 2(iut2t) 2(iut+22) 2(d—1+152 —iu) d -
(z = x) T3 ) (z — y) U2 ) (z — V)29 i




Orthogonality and Completeness

§(d—dl) C-C +...
Gy iy ¢y = e 000k = 03) € €T

where the measure is

(d—2+b+&?}

X {(uj —u)*+ 2

We conjecture that the eigenvectors we found generate the whole Hilbert
space (completeness).



Applications: Periods of One-Wheel Graphs

x| /\:’lw |X

'@ = - > (14 %57) 2 [ Dot

For example, when & = 1, one has A\, *(u) o (u2 + %) and the

above formula becomes

1(2/\/7 2

M >C2M3 when d =4,

[x[*

and

M
2M -2
|X3< M_1 )(22M_2 —1)m—> when d=3.



Applications: TBA for Wheel Graphs

In order to compute (Tr(Z7)(x) Tr(Z™/)(y)). one has to renormalise:
+o0
1+ & + o o =Z{’Z"”Tr(A{\,)=Tr(e’/ﬁ”N“)
N=0

Interpretation: the N-th term of the sum is the contribution from the
N-particle states to the mirror partition function in the thermodynamic
limit with temperature 1/J, chemical potential In¢2, and

H

/\N =e .
N-particle sector



Ay (zsy = free energy density of mirror magnons at temperature 1/J.
= can be computed via the Thermodynamic Bethe Ansatz (TBA)



Ay (zsy = free energy density of mirror magnons at temperature 1/J.
= can be computed via the Thermodynamic Bethe Ansatz (TBA)

The mirror scattering data are directly extracted from the eigenvectors.

(x1, x0| i, t; C1, Cp) o _ 2i(taoatuaca) C1< - ) C2< e )

Pal) 7 el

A3
. X X
+ e2i(u201+u102) [Sll,lz(ula U2)C1 ® C2] <27 1> ,
| |x

where

f
Suaton ) = 405

scalar phase

Shp(un—w) xRy ,(u—uw)
—— —

O(d, C)-invariant R-matrix



Applications: Basso—Dixon Integrals

X4 M
>
X1 x3 | N X y
X2 0

Right integral = (x,..., x| (H,N LR ,) ANy, o y) = /,f/',j,’;\sl)(x,y).



For N = 2 but arbitrary (d, d), we were not able to simplify further than
the following formula:

r(¢) *Z“ (2h +d —2)(2h +d —2)

D(x,y) =
26y (d-27
min(/y,k —om+d— . 2
i )a, | (_‘/( /) (cose)/ [(hth=2mid=2 4, )
1,2,M> )3+ —2m h+hL—2m H
m=0 (A2 4 i)
X2 (u1+u2)
(%) PN 2 ddends.
where cos ) = and C( are the Gegenbauer polynomials.

o IXHy\ :



When d = 4, one has simply

1
Iw (o y) =
o (x.Y) N1(x2y2)'s (ei0 — e=i0)N

X Z / i, ... uN)Hake'aw( ) /\2:,+,1V(Uk)dUk.

(a1,...,an)EZN

If we further impose § = 1 (isotropic lattice), then for M > N,

4.1) (4,1)
14D — et (c- il L
M,N 1<ij<N ) "M—N—=-14i+j,1 ’

for some explicit ¢;; € Q.



Loom for CFTs

Generalization of the fishnet
CFT based on arbitrary Baxter
lattice (set of intersecting lines)

Same properties: non-unitary,
conformal, integrable
[Kazakov and Olivucci (2022)]



Loom for CFTs

Feynman diagrams exhibit Yangian
invariance

[Kazakov, Levkovich-Maslyuk, and Mishnyakov (2023)]
[Loebbert, Riienaufer, and Stawinski (2025)]

Generalization of the fishnet
CFT based on arbitrary Baxter
lattice (set of intersecting lines)

Same properties: non-unitary,
conformal, integrable
[Kazakov and Olivucci (2022)]




The Checkerboard CFT

4
£(B) = N_Tr [Z Zi(—0,0MMZ — & 21 2o Z3Zs — &5 21222324] )
=1

with the constraint wy + ws + w3 + wy = d. We will mostly use

A; = ¢ — w;, which are the bare dimensions of the fields.

It encompasses the fishnet limit of the ABJM theory, and a theory with
BFKL-like spectrum. [Alfimov, Ferrando, Kazakov, and Olivucci (2023)]



Checkerboard Analogues of Basso—Dixon Integrals

Main difference compared to the
fishnet case: there are now 2
graph-building operators, Ay and
Ny, and they do not commute.



We do not diagonalise Ay and A}, independently, but we construct 2

bases {|ify, ..., dy)} and {|if, ..., dn)'} (let us focus on d = 2, with
7= (u,m) € R x Z) such that:

/\N|171,...,L7N>OC|171,...,l7[\/>/ and /\IN|L71,...,LTN>/OC|L717...,LTN>.

Symmetry, orthogonality, and completeness still hold.



+°O '*1 m . \J1 du
bi—1n(x,y) 15}32/\/(2/ + i u (E —i u) fn,20(m; u)2ﬂ_>7

where (x,y) € C2, n= x
fN,QL(n; [7) _ n%+i u7—77%+iu>\L+|_gJ (J))\’IQLI_%J (lT) ,

and

[(Bfm g BazBa ) [ (Aatm y DazBz y )

r(A2+2m+1+A34A1 +iu)r(Az+2m+l+A1 As —|u) :

@) =

The function )\’ is obtained from X through (A1, Ay) < (A3, Ag).



One-Dimensional Integrals



Study of higher-point, track integrals using two techniques: SoV-like
representations and differential equations (bootstrap)



Study of higher-point, track integrals using two techniques: SoV-like
representations and differential equations (bootstrap)

Basic “SoV" relation:

Z/ S|gn X13X23) Ao(a) du
|X12|2=" |x13]2t21U]|x3|2— 210 A (a/2 — i u)Ac(a/2 +iu) 2¢/T
where Ac(x) =T((1+¢€)/2 — x)/T (/2 + x).

Combining it with the star-triangle relation produces convenient

representations of the Feynman integrals, which can be computed as
series (sums over residues).



Study of higher-point, track integrals using two techniques: SoV-like
representations and differential equations (bootstrap)

Basic “SoV" relation:

Z/ S|gn X13X23) Ao(a) du
|X12|2=" |x13]2t21U]|x3|2— 210 A (a/2 — i u)Ac(a/2 +iu) 2¢/T
where Ac(x) =T((1+¢€)/2 — x)/T (/2 + x).

Combining it with the star-triangle relation produces convenient
representations of the Feynman integrals, which can be computed as

series (sums over residues).

We computed all (non-conformal) integrals with 3,4,5,6 external points.



Example: H-integral

X1 Xy
a1 a
b
Qay as
X4 X3
_ Ao(b)Ao(a1)Ao(aa)Ao(d2 + 33 — b)Ao(d1 + da)Ao(a2 + a3) E (2(32+33,5);254,232_ )
= [x1a[201F28)—1 33, [2(bFa2+23)—1 2\ 2(51+34),2(ap +a3) + X1> X2

Ao(a1)Ao(a2)Ao(a3)A0(2a)A0(31 + da)Ao (52 + 33) E 2b;254,253 |
2(a3+ag)—1 2b 2(ag+az)—1 2 (2(51+54),2(52+53)' X1, X2
|xaa|2(31128) =1 | x34 | 2P| xp3 |2(a2+23)

Ao(b)Ao(3/2 — b — 37, ai)Ao(a1 + aa)Ao(a2 + a3) . (2(x; aj+b—1);2a1 225,
+ [xae|2BT 2~ 1) F2( 2(21+24).2(22+23) ,X17X2)

+

Ao(b)Ao(a2)A0(a3)Ao (41 + da — b)Ao(a1 + 2a)Ao(2 + 33) (2(al+34—5);231,253_ )
[x34 20521 +22)—1 [y [2(a2+23)—1 2\ 2(a3+aq4).2(52+33) ' X1 X2 |

where X1 = x1a/X3a, X2 = x23/xa3, and §=1/2 — a.



Example: Conformal Partial Waves in the Comb Channel

Xq X2
Xn X4 X3

n—2

14g 1 —ha i\ 77 s
i—1,i n+1—i .
v, HAo(f) I1 S Ao(8)lx 1

i=1 =1 68;€{gy_2_j:1—8—2_j}
n—3
h; 1—96j—1—9; h 1-96 hpp +1 — 6p—
% H Ao (2 + j—1 i) A (222 + 1) o (Mo n—3
> 2 2 2
j=2
81+h23:61+52—h3,..., 8p_a+t6p_3—hp_2:6,_3+h
% FK( 1+h23:01+62 3261,."..,426,,133 n—2i9n—3 1"§X17-~-7Xn—3> ,

where V), is a kinematical prefactor, xj = Xj+1,j+2 Xj+3,j+4/Xj+1,j+3 Xj+2,j+4, and

_1 .
, . +oo (31)m1 7:1 (bi)’"i+’"i+1(az)mn n xl,m/
e 2 X1, aXn) =

n E | I

My, mp=0 [T (ci)n g mil '

ayiby,
FK(l 1‘?1

[Rosenhaus (2018)]



Triangle-track integrals involve more
complicated series



Triangle-track integrals involve more
complicated series

Generally, several SoV-like representations can be derived: how can we
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find the simplest one?
For instance, for conformal integrals:
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Other degeneracies:

b 1
“Va(1/2-b)



Future Directions

> Corrections (in g) to the fishnet limit can also be studied using 7

» What about structure constants involving operators with different
double-scaling limits?

> Extra simplification in d ¢ {2,4}? Basso-Dixon integrals in 1D?

» Hexagonalisation and application to other classes of fishnet integrals



Thank you for your attention!
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