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The planar �shnet theory and its generalisations admit very few Feynman
diagrams, which have a regular (square-lattice) structure. This can be
used to

▶ solve these theories,

▶ understand the origin of their integrability,

▶ understand the origin of their holographic dual,

▶ gain insight into richer theories, e.g. N = 4 SYM,

▶ (in)directly compute individual Feynman integrals.



The Fishnet Theory

L = Nc Tr
[
X † (−∂µ∂µ)δ X + Z † (−∂µ∂µ)δ̃ Z − (4π)

d
2 ξ2Z †X †ZX

]
,

δ + δ̃ =
d

2
, 0 < δ <

d

2
.

[Gürdo§an and Kazakov (2015)] [Kazakov and Olivucci (2018)]

Feynman rules:

We work in the planar limit Nc → +∞.
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Integrability through Graph-Building

Operators



Graph-Building Operators

〈
Tr(Z J(x))Tr(Z †J(y))

〉
↔

Two graph-building operators: direct channel v mirror channel

In principle, the integrals can be computed through the diagonalisation of
either of these operators.
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Transfer Matrix = Direct-Channel Graph-Building Operator

T
(∆0)
J (u) = Tr0 (R01(u) · · ·R0J(u)) ←→

Yang�Baxter for the R-matrix =⇒ [T
(∆0)
J (u),T

(∆′
0
)

J (v)] = 0.

Taking ∆0 = δ and ∆1 = · · · = ∆J = δ̃, one observes that

ϵJT
(∆0)
J

(
−d

4
+ ϵ

)
∝ϵ→0 ĤJ ←→

ϵ→0

[Gürdo§an and Kazakov (2015)][Gromov, Kazakov, Korchemsky, Negro, and Sizov (2017)]
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The 2-point function is essentially reduced to the computation of

+∞∑
M=0

ξ2MJ
1 ĤM

J =
1

1− ξ2J1 ĤJ

.

Eigenvectors of ĤJ with eigenvalue E = ξ−2J represent primary operators
of the �shnet theory (and their descendants). This is given by the
representation of the conformal group (∆(ξ2), ℓ, ℓ̄) under which the
eigenvector tranforms.



When J = 2, one can compute exactly〈
Tr[Z (x1)Z (x2)] Tr

[
Z †(x3)Z

†(x4)
]〉

and extract from it (exact) conformal dimensions and OPE coe�cients.
Physical states correspond to symmetric traceless tensors of arbitrary
rank ℓ ⩾ 0; their dimensions are

∆ℓ,± = 2+

√
(ℓ+ 1)2 + 1± 2

√
(ℓ+ 1)2 + 4ξ4 .

[Grabner, Gromov, Kazakov, and Korchemsky (2017)]

[Gromov, Kazakov, and Korchemsky (2018)]

For arbitrary J, not completely solved.
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Application: Periods of Zigzag Graphs

1

|x |4
× 4

M

(
2M − 2

M − 1

)[
1− 23−2M(1− (−1)M)

]
ζ2M−3

Conjectured in 1995 [Broadhurst and Kreimer (1995)]

Two proofs:

▶ single-valued multiple polylogarithms, graphical functions
[Brown and Schnetz (2012)]

▶ J = 2 graph-building operator [Gromov, Kazakov, and Korchemsky (2018)]

[Derkachov, Isaev, and Shumilov (2022)]



From Fishnet to N = 4 SYM



Comments and Shortcomings of the Fishnet Theory

▶ The previous results are exact. In particular, for J = 2 and ℓ = 0,

∆0,− = 2+

√
2− 2

√
1+ 4ξ4 = 2± 2 i ξ2 + O(ξ4)

is the exact dimension of Tr
(
Z 2
)
. Reproducing the perturbative

expansion requires to take into account the counter-terms.
We did not need them!

▶ On the other hand, ∆0,+ is the dimension of Tr(Z□Z ) + . . . which
we do not know exactly because there is mixing.
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▶ One �nds only two operators for each ℓ; this means that many
operators are protected in the �shnet theory.

▶ The �shnet theory is a logarithmic CFT: the dilatation operator is
not diagonalisable.

▶ Neither fermions nor gauge boson in the �shnet theory.
[Gürdo§an and Kazakov (2015)] [Kade and Staudacher (2024)]

How can one incorporate back these protected or logarithmic operators?
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New Double-Scaling Limits

[Ferrando, Sever, Sharon, and Urisman (2023)]

Operator-dependent limit:

e− i γ3 →∞ , g → 0 , ξ2n =
g2 e− i

γ3
n

8π2
�xed

Example: for Tr(ZF ), one must take n = 2 and the only diagrams that
remain are

Following the procedure outlined previously, we �nd that

∆Tr(FZ) −→
g→0 ,ξ2 �xed

2+

√
5− 4

√
1+ ξ42 .
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General Situation: Mixing

If we turn to longer operators, such as Tr
(
FZ J

)
for J > 1, then

n = 1+ 1/J.

But there is some form of mixing with Tr
(
XX †Z J

)
(same double-scaling

limit) and Tr
(
Z J
)
(�shnet limit).

The relevant graph-building operator is a 3× 3 matrix. We will show that
it is integrable.



A Short Operator: Tr(FZ )



Feynman Diagrams

Double-scaling limit:

e− i γ3 →∞ , g → 0 , ξ22 =
g2 e− i

γ3
2

64π4
�xed .

Relevant interactions:

− iNcg Tr
(
∂µX

†[Aµ,X ] + ∂µX [Aµ,X †]
)
,

2Ncg
2 Tr
(
X †AµXA

µ
)
, and 2Ncg

2 e− i γ3 Tr
(
X †Z †XZ

)
.

Typical diagram:



Graph-Building Operator

ĤA depends on the gauge:

However, there exists a gauge-independent operator ĤF acting on
antisymmetric tensors Ψµν

F and such that: if Ψµν
F = ∂µ2Ψ

ν
A − ∂ν2Ψ

µ
A, then[

ĤFΨF

]µν
= ∂µ2

[
ĤAΨA

]ν
− ∂ν2

[
ĤAΨA

]µ
.

=⇒
〈
Tr(ZF )(x) Tr

(
Z †F

)
(y)
〉
is gauge-independent in the double-scaling

limit.
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One can invert ĤF :[
Ĥ−1

F ΨF

]µν
=

1

16

(
∂µ2 x

4
12□1∂

ρ
2Ψ

ν
F ,ρ − (µ↔ ν)

)
.

Eigenvectors are �xed by the conformal covariance of the operator:
three-point functions involving a scalar of dimension 1 and a rank-2
antisymmetric tensor of dimension 2.



Spectrum:

▶ (∆ℓ,±, ℓ, ℓ) for ℓ ⩾ 1 with

∆ℓ,± = 2+
√
(ℓ+ 1)2 ± 4ξ22 .

▶ (∆′
ℓ,±, ℓ+ 2, ℓ)⊕ (∆′

ℓ,±, ℓ, ℓ+ 2) for ℓ ⩾ 0 (tensors with ℓ+ 2
indices and mixed symmetry) with

∆′
ℓ,± = 2+

√
(ℓ+ 2)2 + 1± 2

√
(ℓ+ 2)2 + 4ξ42 .

The dimension of Tr(ZF ) is ∆′
0,−.
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Other Short Operators

We performed a similar analysis for the following operators:

Tr
(
XX †Z

)
and Tr

(
X †XZ

)
=⇒ n = 2

Tr(ψ4Z ) or Tr
(
ψ†
1Z
)
=⇒ n =

4

3

Tr(ψ2Z ) or Tr
(
ψ†
3Z
)
=⇒ n = 4



Mixing Between Operators and Between

Scaling Limits



Fishnet Contributions

We focus on Tr
(
Z JF

)
and Tr

(
Z JXX †) for J > 1.

Let us consider the 2-pt function
〈
Tr
(
Z JF

)
(x) Tr

(
(Z †)JF

)
(y)
〉
. When

e− i γ3 → +∞, the dominant contributions are

But Tr
(
Z JF

)
is absent from the �shnet theory, so more graphs need to

be taken into account.
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Mixing

There is still an iterative structure: the graph-building operator is
actually a matrix Ĥ with one row (and one column) for each state that
participate in the mixing.

In our case, there are 3 intermediate states: Tr
(
Z J
)
, Tr
(
Z JF

)
and

Tr
(
Z JXX †).



Ĥ is de�ned such that 2-point functions are essentially matrix elements
of 1

1−Ĥ

Example:〈
Tr(Aµ(x0)Z (x1) . . .Z (xJ)) Tr

(
Z †(zJ) . . .Z

†(z1)
)〉

= − i

2

� ⟨x0, x1, . . . , xJ |
(

1
1−Ĥ

)µ
A∅
|y1, . . . , yJ⟩

(4π2)J
∏J

i=1(yi − zi )2

∏J
i=1 d

4yi
π2J

.

The problem is still to diagonalise Ĥ, and physical states correspond to
those with eigenvalue equal to 1.



Double-Scaling Limit

e− i γ3 →∞ , g → 0 , ξ21+1/J =
g2 e− i J

J+1γ3

8π2
�xed

Each matrix element scales di�erently:

Ĥ = ξ
2(J+1)
1+1/J

g−2Ĥ∅∅ g−1Ĥ∅A g−1Ĥ∅X
g−1ĤA∅ ĤAA ĤAX

g−1ĤX∅ ĤXA ĤXX

 .

Some eigenvalues will diverge, some will go to zero. We focus on those
which remain �nite:

ĤΨ = EΨ , with E = E0 + O(g) , E0 ̸= 0 .
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E�ective Spectral Problem

At leading order, only the above 3× 3 submatrix is relevant. Writing

Ψ =

 Ψ∅,0(x1, . . . , xJ)
Ψµ

A,0(x0, x1, . . . , xJ)

ΨX ,0(x0, x1, . . . , xJ)

+ O(g) ,

we get Ψ∅,0 = 0 and

ξ
2(J+1)
1+1/J Ĥ

(
ΨF ,0

ΨX ,0

)
= E0

(
ΨF ,0

ΨX ,0

)
for Ψµν

F ,0 = ∂µ0Ψ
ν
A,0 − ∂ν0Ψ

µ
A,0, and some 2× 2 matrix Ĥ depending on all

9 matrix elements of Ĥ.



Ĥij = Ĥij − Ĥi∅Ĥ∅∅Ĥ∅j , (i , j) ∈ {A,X}

is a complicated matrix of integral operators but it is local and gauge

invariant (contrary to Ĥ). As an example:

[
ĤFXΨX

]
(θ, x0, . . . , xJ ) =

θ · ∂0

4

� J∏
j=0

d
4yj

π2

ΨX (y0, . . . , yJ )∏J
i=0

(xi − yi )
2y2

i,i+1

×
�
d
4z

π2

(x0 − y0)
2

(x0 − z)2

[
1

2(z − y1)
2(z − yJ )

2
θ · ∂z

 y2
10

(z − yJ )
2

(z − y0)
2

−
y2J0(z − y1)

2

(z − y0)
2


+

(
θ · (yJ − z)

(yJ − z)2
−

θ · (y1 − z)

(y1 − z)2

)( y2
10

(z − y1)
2(z − y0)

2
+

y2J0

(z − yJ )
2(z − y0)

2
−

y2
1J

(z − y1)
2(z − yJ )

2

)]
,



Surprisingly, Ĥ has a relatively simple inverse:

Ĥ−1 =

 θ · ∂0 x2J0x210 ∂0 · ∂(θ) 2 θ · ∂0
(

θ·xJ0
x2
J0

− θ·x10
x2
10

)
x2J0x

2

10

2
(

x10·∂(θ)

x2
10

− xJ0·∂(θ)

x2
J0

)
x2J0x

2

10 ∂0 · ∂(θ) ∂0,µ x2J0x
2

10 ∂
µ
0
+ 8 x10 · xJ0


×

∏J−1

i=1 x2i,i+1
∏J

i=1 □i

(−4)J+1
,

where θµ is a polarisation vector such that {θµ, θν} = 0. It encodes the
tensor structure: Ψµν 7→ Ψ = θµθνΨµν .



Integrability

We can construct a transfer matrix

T (u) = tr6
(
L
(ρ0)
Y0

(u)L
(1,0,0)
Y1

(u) · · · L(1,0,0)YJ
(u)
)

such that
T (0) = (−1)J+1Ĥ−1 .

We have checked that the 6× 6 Lax matrices are solution to the RLL
equation

R12(u − v)L
(ρ0)
Y ,1 (u)L

(ρ0)
Y ,2 (v) = L

(ρ0)
Y ,2 (v)L

(ρ0)
Y ,1 (u)R12(u − v) ,

where R12(u) is the usual O(5, 1)-invariant R-matrix.
[Zamolodchikov and Zamolodchikov (1979)]
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We have checked that the 6× 6 Lax matrices are solution to the RLL
equation

R12(u − v)L
(ρ0)
Y ,1 (u)L

(ρ0)
Y ,2 (v) = L

(ρ0)
Y ,2 (v)L

(ρ0)
Y ,1 (u)R12(u − v) ,

where R12(u) is the usual O(5, 1)-invariant R-matrix.
[Zamolodchikov and Zamolodchikov (1979)]



The Lax matrices for sites 1, . . . , J are the usual ones for scalar
representations:

L
(1,0,0)
Y ,MN (u) = u2ηMN − u (YM∂Y N − YN∂YM )− 1

2
YMYN□Y .

Embedding space: 1 ⩽ M ⩽ 6, metric ηMN = diag(1, 1, 1, 1, 1,−1), and
YMYM = 0.



But the representation at site 0 is reducible

ρ0 = [Θ · ∂Y (1, 1, 1)︸ ︷︷ ︸
F

]⊕ (2, 0, 0)︸ ︷︷ ︸
XX†

and the Lax matrix appears to be new:

L
(ρ0)
Y ,MN(u) = u2ηMN − u q

(ρ0)
MN + LY ,MN ,

where the conformal generators are

q
(ρ0)
MN =

(
YM∂Y N − YN∂YM +ΘM∂ΘN −ΘN∂ΘM 0

0 YM∂Y N − YN∂YM

)
and the operator LY is

LMN
Y = −1

2

(
(Θ · ∂Y )Y

MY N (∂Y · ∂Θ) (Θ · ∂Y )
[
YMΘN − Y NΘM

][
Y N∂M

Θ − YM∂N
Θ

]
(∂Y · ∂Θ)

1

2

[
YM□YY

N + Y N□YY
M
]
+ 2ηMN

)
.



Mirror Channel and Separation of Variables



Diagonalisation of the Mirror Graph-Building Operator

ΛN is part of a commuting family of open-spin-chain operators. The
kernels of these integral operators are

Clear (spin-chain) interpretation in dimension 2: the eigenvectors form a
basis of separated variables.

[Derkachov, Korchemsky, and Manashov (2002)] [Derkachov and Manashov (2014)]



If δ ∈ iR, then the operators act on L2(Rd)⊗N . We will perform the
analytic continutation to 0 < δ < d

2 at the end.

When N = 1, the eigenvectors |u⃗,C ⟩ are parametrised by
u⃗ = (u, l) ∈ R× N and C , a symmetric traceless tensor of rank l :

⟨x |u⃗,C ⟩ = Cµ1...µl xµ1 . . . xµl

x2(
d
4
+ δ

2
−i u)

Λ1 |u⃗,C ⟩ =
Γ(δ)Γ

(
d
4 + l−δ

2 + i u
)
Γ
(
d
4 + l−δ

2 − i u
)

Γ(δ̃)Γ
(
d
4 + l+δ

2 + i u
)
Γ
(
d
4 + l+δ

2 − i u
)︸ ︷︷ ︸

λl (u)

|u⃗,C ⟩



For higher N, the eigenvectors are parametrised similarly,

|u⃗1, . . . , u⃗N ;
C︷ ︸︸ ︷

C1 ⊗ · · · ⊗ CN⟩, and the eigenvalues are simply
∏N

k=1 λlk (uk).



Symmetry

For any permutation τ ,

|u⃗1, . . . , u⃗N ;C ⟩ =
∣∣u⃗τ−1(1), . . . , u⃗τ−1(N);S(u⃗1, . . . , u⃗N ; τ)C

〉
,

where the S-matrix factorises into products of 2→ 2 scattering governed
(up to a phase) by the relevant O(d ,C)-invariant R-matrix Rl,l′(u − u′)
(solution to Yang�Baxter).

This required new, explicit representations for the R-matrices for arbitrary
spins. For example,

[Rl1,l2(u)C1 ⊗ C2] (x , y)

∝
�

z2(i u+
l1+l2
2

−1)C1(y − v)C2(x − v)

(z − x)2(i u+
l21
2 )(z − y)2(i u+

l12
2 )(z − v)2(d−1+

l1+l2
2

−i u)

d
dzddv

πd
.

[Derkachov, Ferrando, and Olivucci (2021)]



Symmetry

For any permutation τ ,

|u⃗1, . . . , u⃗N ;C ⟩ =
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l12
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2

−i u)
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[Derkachov, Ferrando, and Olivucci (2021)]



Orthogonality and Completeness

⟨u⃗1, . . . , u⃗N ;C |u⃗ ′
1, . . . , u⃗

′
N ;C

′⟩ =
∏N

k=1 δ(u⃗k − u⃗ ′
k) C · C ′ + . . .

µ(u⃗1, . . . , u⃗N)
,

where the measure is

µ(u⃗1, . . . , u⃗N) =
∏

1⩽j<k⩽N

[
(uj − uk)

2 +
(lj − lk)

2

4

]

×
[
(uj − uk)

2 +
(d − 2+ lj + lk)

2

4

]
.

We conjecture that the eigenvectors we found generate the whole Hilbert
space (completeness).



Applications: Periods of One-Wheel Graphs

= ⟨x |ΛM
1 |x⟩

=
Γ
(
d−2
2

)
|x |d

+∞∑
l=0

(
l +

d − 2

2

)
(d − 2)l

l!

� +∞

−∞
λMl (u)

du

2π

For example, when δ = 1, one has λ−1
l (u) ∝

(
u2 + (2l+d−2)2

16

)
and the

above formula becomes

1

|x |4

(
2M − 2

M − 1

)
ζ2M−3 when d = 4 ,

[Belokurov and Ussyukina (1983)][Broadhurst (1985)]

and
π

1−M
2

|x |3

(
2M − 2

M − 1

)
(22M−2 − 1)ζ2M−2 when d = 3 .



Applications: TBA for Wheel Graphs

In order to compute
〈
Tr
(
Z J
)
(x) Tr

(
Z †J)(y)〉, one has to renormalise:

Interpretation: the N-th term of the sum is the contribution from the
N-particle states to the mirror partition function in the thermodynamic
limit with temperature 1/J, chemical potential ln ξ2, and

ΛN = e−H̃
∣∣∣
N-particle sector

.



∆Tr(Z J ) = free energy density of mirror magnons at temperature 1/J.
⇒ can be computed via the Thermodynamic Bethe Ansatz (TBA)

The mirror scattering data are directly extracted from the eigenvectors.

⟨x1, x2|u⃗1, u⃗2;C1,C2⟩ ∝
x2
2
≫x2

1

e2 i(u1σ1+u2σ2) C1

(
x1
|x1|

)
C2

(
x2
|x2|

)
+ e2 i(u2σ1+u1σ2) [Sl1,l2(u1, u2)C1 ⊗ C2]

(
x2
|x2|

,
x1
|x1|

)
,

where

Sl1,l2(u1, u2) =
fl1(u1)

fl2(u2)
Sl1,l2(u1 − u2)︸ ︷︷ ︸

scalar phase

× Rl1,l2(u1 − u2)︸ ︷︷ ︸
O(d,C)-invariant R-matrix

.

[Basso, Ferrando, Kazakov, and Zhong (2019)]
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Applications: Basso�Dixon Integrals

x1

x2

x3

x4

•
•
•
•

•
•
•
•

•
•
•
•

N

M

y

0

x

•
•
•
•

•
•
•
•

•
•
•
•

[Basso and Dixon (2017)]

Right integral = ⟨x , . . . , x |
(∏N

i=1 x̂
2δ
i−1,i

)
ΛM+1
N |y , . . . , y⟩ = I

(d,δ)
M,N (x , y).



For N = 2 but arbitrary (d , δ), we were not able to simplify further than
the following formula:

I
(d,δ)
M,2 (x , y) =

Γ
(
d
2

)2
2(x2y2)δ̃

+∞∑
l1,l2=0

(2l1 + d − 2)(2l2 + d − 2)

(d − 2)2

×
min(l1,l2)∑

m=0

al1,l2,mC
( d−2

2
)

l1+l2−2m(cos θ)

� ∣∣∣∣∣Γ
(
l1+l2−2m+d−2

2 + i u12
)

Γ
(
l1+l2−2m+2

2 + i u12
) ∣∣∣∣∣

2

×
(
x2

y2

)i(u1+u2)

[λl1(u1)λl2(u2)]
M+2µ(u⃗1, u⃗2)du1du2 ,

where cos θ = x·y
|x||y | , and C

(α)
l are the Gegenbauer polynomials.

[Derkachov, Ferrando, and Olivucci (2021)]



When d = 4, one has simply

I
(4,δ)
M,N (x , y) =

1

N!(x2y2)
Nδ̃
2 (e i θ − e− i θ)N

×
∑

(a1,...,aN )∈ZN

�
µ(u⃗1, . . . , u⃗N)

N∏
k=1

ak e
i akθ

(
x2

y2

)i uk

λM+N
ak−1 (uk)duk .

[Basso and Dixon (2017)][Derkachov and Olivucci (2019)]

If we further impose δ = 1 (isotropic lattice), then for M ⩾ N,

I
(4,1)
M,N = det

1⩽i,j⩽N

(
ci,j I

(4,1)
M−N−1+i+j,1

)
,

for some explicit ci,j ∈ Q. [Basso and Dixon (2017)]

[Basso, Dixon, Kosower, Krajenbrink, and Zhong (2021)]



Loom for CFTs

Feynman diagrams exhibit Yangian
invariance
[Kazakov, Levkovich-Maslyuk, and Mishnyakov (2023)]

[Loebbert, Rüenaufer, and Stawinski (2025)]

Generalization of the �shnet
CFT based on arbitrary Baxter
lattice (set of intersecting lines)

Same properties: non-unitary,
conformal, integrable
[Kazakov and Olivucci (2022)]
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The Checkerboard CFT

L(CB) =Nc Tr

 4∑
j=1

Z̄j(−∂µ∂µ)wjZj − ξ21 Z̄1Z̄2Z3Z4 − ξ22 Z1Z2Z̄3Z̄4

 ,
with the constraint w1 + w2 + w3 + w4 = d . We will mostly use
∆j =

d
2 − wj , which are the bare dimensions of the �elds.

It encompasses the �shnet limit of the ABJM theory, and a theory with
BFKL-like spectrum. [Al�mov, Ferrando, Kazakov, and Olivucci (2023)]



Checkerboard Analogues of Basso�Dixon Integrals

N

M

y

0

x

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

Main di�erence compared to the
�shnet case: there are now 2
graph-building operators, ΛN and
Λ′
N , and they do not commute.



We do not diagonalise ΛN and Λ′
N independently, but we construct 2

bases {|u⃗1, . . . , u⃗N⟩} and {|u⃗1, . . . , u⃗N⟩′} (let us focus on d = 2, with
u⃗ = (u,m) ∈ R× Z) such that:

ΛN |u⃗1, . . . , u⃗N⟩ ∝ |u⃗1, . . . , u⃗N⟩′ and Λ′
N |u⃗1, . . . , u⃗N⟩

′ ∝ |u⃗1, . . . , u⃗N⟩ .

Symmetry, orthogonality, and completeness still hold.



I2L−1,N(x , y) ∝ det
1⩽i,j⩽N

(∑
m∈Z

� +∞

−∞

(m
2
+ i u

)i−1(m
2
− i u

)j−1

fN,2L(η; u⃗)
du

2π

)
,

where (x , y) ∈ C2, η = x
y ,

fN,2L(η; u⃗) = η
m
2
+i u η̄−

m
2
+i uλL+⌊

N
2 ⌋(u⃗)λ′L+⌊

N−1

2 ⌋(u⃗) ,

and

λ(u⃗) =
Γ
(
∆1+m

2 + ∆4−∆2

4 − i u
)
Γ
(
∆3+m

2 + ∆4−∆2

4 + i u
)

Γ
(
∆2+m+1

2 + ∆3−∆1

4 + i u
)
Γ
(
∆2+m+1

2 + ∆1−∆3

4 − i u
) .

The function λ′ is obtained from λ through (∆1,∆2)↔ (∆3,∆4).
[Al�mov, Ferrando, Kazakov, and Olivucci (2023)]



One-Dimensional Integrals



Study of higher-point, track integrals using two techniques: SoV-like
representations and di�erential equations (bootstrap)

[work in progress with F. Loebbert, A. Mierau, and S. Stawinski]

Basic �SoV� relation:

1

|x12|2a
=

1∑
ϵ=0

�
signϵ(x13x23)

|x13|a+2 i u|x23|a−2 i u

A0(a)

Aϵ(a/2− i u)Aϵ(a/2+ i u)

du

2
√
π
,

where Aϵ(x) = Γ((1+ ϵ)/2− x)/Γ(ϵ/2+ x).

Combining it with the star-triangle relation produces convenient
representations of the Feynman integrals, which can be computed as
series (sums over residues).

We computed all (non-conformal) integrals with 3,4,5,6 external points.
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Example: H-integral

=
A0(b)A0(a1)A0(a4)A0(ã2 + ã3 − b)A0(ã1 + ã4)A0(a2 + a3)

|x14|2(a1+a4)−1|x34|2(b+a2+a3)−1
F2
(
2(a2+a3−b̃);2ã4,2a2
2(ã1+ã4),2(a2+a3)

;χ1, χ2

)
+

A0(a1)A0(a2)A0(a3)A0(a4)A0(ã1 + ã4)A0(ã2 + ã3)

|x14|2(a1+a4)−1|x34|2b|x23|2(a2+a3)−1
F2
(

2b;2ã4,2ã3
2(ã1+ã4),2(ã2+ã3)

;χ1, χ2

)
+

A0(b)A0(3/2− b −
∑

i ai )A0(a1 + a4)A0(a2 + a3)

|x34|2(b+
∑

i ai−1)
F2
(
2(
∑

i ai+b−1);2a1,2a2
2(a1+a4),2(a2+a3)

;χ1, χ2

)
+

A0(b)A0(a2)A0(a3)A0(ã1 + ã4 − b)A0(a1 + a4)A0(ã2 + ã3)

|x34|2(b+a1+a4)−1|x23|2(a2+a3)−1
F2
(
2(a1+a4−b̃);2a1,2ã3
2(a1+a4),2(ã2+ã3)

;χ1, χ2

)
,

where χ1 = x14/x34, χ2 = x23/x43, and ã = 1/2− a.



Example: Conformal Partial Waves in the Comb Channel

= Vn

n−2∏
i=1

A0

(
1 + gi−1,i − hn+1−i

2

) n−3∏
j=1

∑
δj∈{gn−2−j ,1−gn−2−j}

A0(δj )|χj |δj

×
n−3∏
j=2

A0

(
hj+2 + 1− δj−1 − δj

2

)
A0

(
h32 + 1− δ1

2

)
A0

(
hn1 + 1− δn−3

2

)
× FK

(
δ1+h23 ;δ1+δ2−h3,...,δn−4+δn−3−hn−2 ;δn−3+h1n

2δ1,...,2δn−3
;χ1, . . . , χn−3

)
,

where Vn is a kinematical prefactor, χj = xj+1,j+2 xj+3,j+4/xj+1,j+3 xj+2,j+4, and

FK

(
a1 ;b1,...,bn−1 ;a2

c1,...,cn
; x1, . . . , xn

)
=

+∞∑
m1,...,mn=0

(a1)m1
∏n−1

i=1 (bi )mi+mi+1
(a2)mn∏n

i=1(ci )n

n∏
i=1

x
mi
i

mi !
.

[Rosenhaus (2018)]



Triangle-track integrals involve more
complicated series

Generally, several SoV-like representations can be derived: how can we
�nd the simplest one?
For instance, for conformal integrals:

a1 + a5 + a6 + b = 1

a2 + a3 + a4 + b = 1

Other degeneracies:
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Future Directions

▶ Corrections (in g) to the �shnet limit can also be studied using Ĥ

▶ What about structure constants involving operators with di�erent
double-scaling limits?

▶ Extra simpli�cation in d /∈ {2, 4}? Basso�Dixon integrals in 1D?

▶ Hexagonalisation and application to other classes of �shnet integrals
[Basso, Komatsu, and Vieira (2015)][Basso, Caetano, and Fleury (2018)]

[Aprile and Olivucci (2023)]



Thank you for your attention!


