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Motivation

✔ Computing observables in four-dimensional supersymmetric theories in the planar limit for finite

’t Hooft coupling remains a challenging task

✔ Powerful techniques (localization, integrability) have been developed but a complete solution is

still out of reach

✔ However, there exists a broad class of observables in four-dimensional N = 2 and N = 4

superconformal Yang–Mills theories for which the problem becomes tractable

✔ These observables admit a unified representation as Fredholm determinants of integrable

Bessel-type operators

The goal of this talk is to explain connections between four (seemingly unrelated) areas:

✗ Solution of planar gauge theories at arbitrary ’t Hooft coupling

✗ Fredholm determinants of integrable kernels

✗ Iterated Chen integrals and motivic periods

✗ Enumerative combinatorics of Dyck paths
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Correlation functions in N = 4 SYM

Four-point functions of half-BPS operators O = tr(ZK/2XK/2) + permutations
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Limit of infinitely heavy operators

lim
K→∞

GK =
∑

ℓ=bridge length

[Oℓ(z, z̄)]
2

O(z, z̄) = ‘octagon’ is a multilinear combination of ladder integrals [Coronado]

Oℓ=0(z, z̄) = 1 + g2f1 − 2g4f2 + 6g6f3 + g8(−20f4 − 1
2
f22 + f1f3) + . . .

= 1 +
∑

n≥1

(g2)n ×
∑

i1+···+im=n

di1...imfi1 . . . fim
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From fishnets to Fredholm determinants

Ladder/fishnet integrals

fL =

=
1

z − z̄

L∑

m=0

(−1)m(2L−m)!

L!(L−m)!m!
lnm(zz̄)

[

Li2L−m(z)
︸ ︷︷ ︸

polylog

−Li2L−m(z̄)
]

The octagon admits an exact representation as a determinant of a semi-infinite (Bessel) matrix
[Kostov,Petkova,Serban],[Belitsky,GK]

Oℓ ∼ det
1≤n,m<∞

(δnm −Knm(g))

Similar det-representation has been found for other observables in SYM theories [Many people]

✔ V.e.v. of half-BPS circular Wilson loop in N = 4 SYM

✔ Correlation function of infinitely heavy half-BPS operators (= octagon)

✔ Flux tube correlators (cusp anom. dim., scattering amplitudes)

✔ Free energy and correlation functions in N = 2 SYM
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Truncated Bessel matrix/kernel

Across different observables, the primary object of investigation is

Dℓ(g) = det (δnm −Knm(g))
∣
∣
∣
1≤n,m<∞

The matrix elements admit an integral representation in terms of Bessel functions

Knm(g) =

∫ ∞

0
dxψn(x)χ

(√x
2g

)

ψm(x)

ψn(x) =
√
2n+ ℓ− 1

J2n+ℓ−1(
√
x)√

x

The determinant depends on the coupling g, the bridge length ℓ and the symbol of the matrix χ(x)

Special cases of the symbol

✔ χ(x) = 1: the Bessel matrix simplifies as Knm = δnm, the determinant vanishes D(g) = 0

✔ χ(x) = θ(1− x): Dℓ(g) coincides with the Tracy-Widom distribution

✔ Various symbol functions in SYM theories, e.g.

χ
flux tube

(x) = 1− coth(x/2)
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Flux tube correlators

The determinant depends on the symbol function χ(x) in a nontrivial way

For generic χ(x), we can expand Dℓ(g) at small and large g, and interpolate between them.

For the ‘flux tube’, Dℓ(g) can be computed exactly for the first few ℓ’s

Dℓ=0(g) =

[
2πg cosh3(2πg)

sinh(2πg)

]1/8

Dℓ=1(g) =

[
sinh3(2πg)

(2πg)3 cosh(2πg)

]1/8

Dℓ=2(g) =
log(cosh(2πg))

2(πg)2

[
2πg cosh3(2πg)

sinh(2πg)

]1/8

Is it possible to obtain exact expressions for higher ℓ?

Can Dℓ be expressed using ‘elementary’ functions?

Otherwise, what is the suitable space of ‘special’ functions?
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Master equation

For arbitrary symbol function χ(x), the determinant satisfies a differential-difference equation

g∂g log

(
Dℓ+1

Dℓ−1

)

= 2ℓ

(

D2
ℓ

Dℓ−1Dℓ+1
− 1

)

This equation emerged from the study of correlation functions in N = 2 SYM using integrability

[Ferrando,Komatsu,Lefundes,Serban] and localization [GK,Testa], for the special choice χ(x) = −sinh−2(x
2
)

Supplemented with the boundary condition at weak coupling

Dℓ(g) = 1 +O(g2(ℓ+1))

it allows for a recursive determination of the function Dℓ+n(g) for arbitrary n ≥ 1, e.g.

Dℓ+1(g) = 2ℓDℓ−1(g)

∫ 1

0
dx x2ℓ−1

(
Dℓ(xg)

Dℓ−1(xg)

)2

The function Dℓ+n(g) can be expressed in terms of Dℓ−1(g) and Dℓ(g)

Due to nonlinearity on the right-hand side, there is little hope of finding a closed-form expression,

unless...
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Some simplifications

Examine separately even and odd n and introduce the ratios

Dℓ+2n−1

Dℓ−1
= N2n

d2n(g)

g2n(n+ℓ−1)
,

Dℓ+2n

Dℓ
= N2n+1

d2n+1(g)

g2n(n+ℓ)
,

where Nn is the normalization factor

The functions dn(g) satisfy the equations

d0 = d1 = 1

d2nd
′
2n+2 − d2n+2d

′
2n = d22n+1 (log f+)′

d2n−1d
′
2n+1 − d2n+1d

′
2n−1 = d22n (log f−)′

where n ≥ 0 and prime denotes a derivative with respect of the coupling g

The functions f±(g) depend on the initial conditions, Dℓ−1(g) and Dℓ(g)

(log f+(g))′ = g2ℓ−1 2D2
ℓ (g)

D2
ℓ−1(g)

, (log f−(g))′ = g1−2ℓ
2D2

ℓ−1(g)

D2
ℓ (g)
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First attempt

Start with d2(g)

d2(g) =

∫ g

0
dg1(log f+(g1))

′ =

∫ g

0
d log f+(g1)

Continue with d3(g)

d3(g) =

∫ g

0
d log f−(g1) d

2
2(g1)

= 2

∫ g

0
d log f−(g1)

∫ g1

0
d log f+(g2)

∫ g2

0
d log f+(g3)

Examine d4(g)

d4(g) = d2(g)

∫ g

0
dg1

d23(g1)

d22(g1)
(log f+(g1))

′ = d2(g)

∫ g

0
dg1

d23(g1)

d22(g1)
d′2(g1)

Integrate by parts

d4(g) = −d23(g) + 2d2(g)

∫ g

0
dg1 d2(g1)d3(g1)(log f−(g1))

′ .

Nonlinearity disappeared! d4(g) can be expanded into a linear combination of iterated integrals
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Iterated (Chen) integrals

The integrals Iσ1σ2···σk
(g) depend on a sequence of signs σi = ±

They are constructed by integrating the product of the derivatives (log f±(g))′

Iσ1σ2···σk
(g) =

∫ g

0
d log fσ1 (g1)

∫ g1

0
d log fσ2 (g2)· · ·

∫ gk−1

0
d log fσk

(gk)

Satisfy a recurrence relation

Iσ1σ2···σk
(g) =

∫ g

0
d log fσ1 (g1) Iσ2···σk

(g1)

Their product can be expanded into a linear combination of integrals using the shuffle product

Iσ1σ2···σk
(g)Iσk+1···σk+m

(g) =
∑

σ′∈(k,m) shuffles

Iσ′

1σ
′

2···σ
′

k+m
(g)

Example
I+(g)I−++(g) = 3I−+++(g) + I+−++(g)

The total number of ‘+’ and ‘−’ entries on both sides is preserved
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The use of the iterated integrals

So far we obtained

d2(g) = I+(g)

d3(g) = 2I−++(g)

d4(g) = 12I+−−+++(g) + 4I+−+−++(g)

A general solution for dn is given by linear combinations of Iσ1σ2... with integer positive coefficients

dn(g) =
∑

cσ1σ2...σk
Iσ1σ2···σk

(g)

The sum runs over sequences (σ1σ2 . . . σk) of length k = n(n− 1)/2

The number of ‘+’ and ‘−’ entries depends on the parity of n

n = 2p : k+ = p2 , k− = p(p− 1) ,

n = 2p+ 1 : k+ = p(p+ 1) , k− = p2 .
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Solutions

The equations for dn(g) lead to an overdetermined linear system for the coefficients cσ1σ2...σk

The excess of equations over unknowns grows exponentially with n

The resulting expression for d5(g) is

d5(g) = 16
(

I−+−+−++−++ + I−++−+−+−++ + I−+−++−+−++

+ 3I−+−+−+−+++ + 3I−+−++−−+++ + 3I−++−+−−+++ + 3I−++−−++−++

+ 6I−+−+−−++++ + 9I−++−−+−+++ + 18I−++−−−++++

)

The total number of terms equals (k+ + k−)!/(k+!k−!) = 210 but numerous c−coefficients vanish

For different n, the total number of coefficients and the number of non-zero coefficients are

n 2 3 4 5 6 7

Total 1 3 15 210 5005 293930

Non-zero 1 1 2 10 120 3276

These numbers admit a simple interpretation in terms of path counting on a 2d square lattice lattice
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Solution for n = 6

d6(g) = 64

×

(

30I+−−+−+−+−−+++++ + 18I+−−+−+−+−+−++++ + 9I+−−+−+−+−++−+++ + 3I+−−+−+−+−+++−++

+ 24I+−−+−+−++−−++++ + 12I+−−+−+−++−+−+++ + 4I+−−+−+−++−++−++ + 9I+−−+−+−+++−−+++

+ 3I+−−+−+−+++−+−++ + 90I+−−+−++−−−+++++ + 54I+−−+−++−−+−++++ + 27I+−−+−++−−++−+++

+ 9I+−−+−++−−+++−++ + 42I+−−+−++−+−−++++ + 21I+−−+−++−+−+−+++ + 7I+−−+−++−+−++−++

+ 12I+−−+−++−++−−+++ + 4I+−−+−++−++−+−++ + 54I+−−+−+++−−−++++ + 27I+−−+−+++−−+−+++

+ 9I+−−+−+++−−++−++ + 9I+−−+−+++−+−−+++ + 3I+−−+−+++−+−+−++ + 90I+−−++−−+−−+++++

+ 54I+−−++−−+−+−++++ + 27I+−−++−−+−++−+++ + 9I+−−++−−+−+++−++ + 72I+−−++−−++−−++++

+ 36I+−−++−−++−+−+++ + 12I+−−++−−++−++−++ + 27I+−−++−−+++−−+++ + 9I+−−++−−+++−+−++

+ 270I+−−++−+−−−+++++ + 162I+−−++−+−−+−++++ + 81I+−−++−+−−++−+++ + 27I+−−++−+−−+++−++

+ 96I+−−++−+−+−−++++ + 48I+−−++−+−+−+−+++ + 16I+−−++−+−+−++−++ + 21I+−−++−+−++−−+++

+ 7I+−−++−+−++−+−++ + 72I+−−++−++−−−++++ + 36I+−−++−++−−+−+++ + 12I+−−++−++−−++−++

+ 12I+−−++−++−+−−+++ + 4I+−−++−++−+−+−++ + 540I+−−+++−−−−+++++ + 324I+−−+++−−−+−++++

+ 162I+−−+++−−−++−+++ + 54I+−−+++−−−+++−++ + 162I+−−+++−−+−−++++ + 81I+−−+++−−+−+−+++

+ 27I+−−+++−−+−++−++ + 27I+−−+++−−++−−+++ + 9I+−−+++−−++−+−++ + 54I+−−+++−+−−−++++

+ 27I+−−+++−+−−+−+++ + 9I+−−+++−+−−++−++ + 9I+−−+++−+−+−−+++ + 3I+−−+++−+−+−+−++

+ 30I+−+−−+−+−−+++++ + 18I+−+−−+−+−+−++++ + 9I+−+−−+−+−++−+++ + 3I+−+−−+−+−+++−++

+ 24I+−+−−+−++−−++++ + 12I+−+−−+−++−+−+++ + 4I+−+−−+−++−++−++ + 9I+−+−−+−+++−−+++

+ 3I+−+−−+−+++−+−++ + 90I+−+−−++−−−+++++ + 54I+−+−−++−−+−++++ + 27I+−+−−++−−++−+++

+ 9I+−+−−++−−+++−++ + 42I+−+−−++−+−−++++ + 21I+−+−−++−+−+−+++ + 7I+−+−−++−+−++−++

+ 12I+−+−−++−++−−+++ + 4I+−+−−++−++−+−++ + 54I+−+−−+++−−−++++ + 27I+−+−−+++−−+−+++

+ 9I+−+−−+++−−++−++ + 9I+−+−−+++−+−−+++ + 3I+−+−−+++−+−+−++ + 30I+−+−+−−+−−+++++

+ 18I+−+−+−−+−+−++++ + 9I+−+−+−−+−++−+++ + 3I+−+−+−−+−+++−++ + 24I+−+−+−−++−−++++

+ 12I+−+−+−−++−+−+++ + 4I+−+−+−−++−++−++ + 9I+−+−+−−+++−−+++ + 3I+−+−+−−+++−+−++

+ 90I+−+−+−+−−−+++++ + 54I+−+−+−+−−+−++++ + 27I+−+−+−+−−++−+++ + 9I+−+−+−+−−+++−++

+ 36I+−+−+−+−+−−++++ + 18I+−+−+−+−+−+−+++ + 6I+−+−+−+−+−++−++ + 9I+−+−+−+−++−−+++
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Dyck path

A particular example of a lattice path

5 10 15 20

2

4

6

8

10

Starts at the origin (0, 0), ends on the x−axis, and never dips below it

Assign signs ‘+’ and ‘−’ to the up- and down-steps, respectively

A path can be represented as a sequence (σ1σ2 . . . σk), where σi = ± corresponds to the ith step:

(+ + +−++++−−−−−+−−++−−)
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Relation to lattice paths

General solution

dn(g) =
∑

cσ1σ2...σk
Iσ1σ2···σk

(g)

The iterated integrals Iσ1σ2···σk
(g) depend on the initial conditions Dℓ−1(g) and Dℓ(g)

The coefficients cσ1σ2...σk
take positive integers and universal : they depend only on nonnegative

integer n

Q: Is it possible to construct dn(g) without performing any explicit calculations?

Main idea: interpret each term in the sum as corresponding to a path on the square lattice,

uniquely determined by the sequence (σ1σ2 · · ·σk)

The function dn(g) is a partition function (or generating function in enumerating

combinatorics) of an ensemble of lattice paths confined to a nontrivial domain
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Warm up example

Examples of paths for dn at n = 8:

c+−−+++−−−−+++++−−−−−−+++++++

c+−+−++−+−+−+−++−+−+−+−+−+−++

Total length k = n(n− 1)/2 = 28, number of ‘+’ and ‘−’ is k+ = 16 and k− = 12

The corresponding paths are

0 5 10 15 20 25

- 2

0

2

4

0 5 10 15 20 25

- 3

- 2

- 1

0

1

2

3

4

For all coefficients in d8, the paths begin at the origin (0, 0) and terminate at the same point

pn = (n(n− 1)/2, (−1)n ⌊n/2⌋)

regardless of the order in which the ‘+’ and ‘−’ signs appear in the sequence.
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Admissible paths

The total number of possible coefficients is (k+ + k−)!/(k+!k−!)

The number of nonzero coefficients is significantly smaller:

All admissible paths must terminate at the point pn and remain entirely

within the envelope defined by the shaded region. Paths that violate this

rule do not contribute.

0 5 10 15 20 25

- 2

0

2

4
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Application to the flux tube correlators

Recall that Dℓ (for ℓ = 0, 1, 2) were given by elementary functions (notation z = e−4πg)

D0(g) =

[
(1 + z)3 log(1/z)

8(1− z)z

]1/8

, D1(g) =

[
2(1− z)3

z(1 + z) log3(1/z)

]1/8

The iterated integrals are built out of

(log f+(g))′ =
1

π

1− z

1 + z
, (log f−(g))′ = 4π

1 + z

1− z

They admit a d-log representation, e.g.

I−++(g) =
1

2π4

∫ z

1
d log

(
1− z1

2
√
z1

)∫ z1

1
d log

(
1 + z2

2
√
z2

)∫ z2

1
d log

(
1 + z3

2
√
z3

)

Can be evaluated in terms of harmonic polylogarithms (HPL) of weight 3.

Finally,

D3(g) = 4I−++(g)D1(g)/g
4

Dn(g) ∼ [Multi-linear combination of HPL’s of weight n(n− 1)/2]
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Conclusions

✔ A broad class of observables in four-dimensional N = 2 and N = 4 superconformal Yang-Mills

theories are computable in the planar limit at finite ’t Hooft coupling

✔ These observables admit a representation as Fredholm determinants of integrable Bessel

kernels and satisfy a universal differential-difference equation

✔ This powerful equation allows for the recursive determination of its solutions in terms of iterated

Chen integrals

✔ The observables admit a natural interpretation in terms of enumerative combinatorics: they can

be identified with the partition function (or generating function) of an ensemble of lattice paths
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Take-home message
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