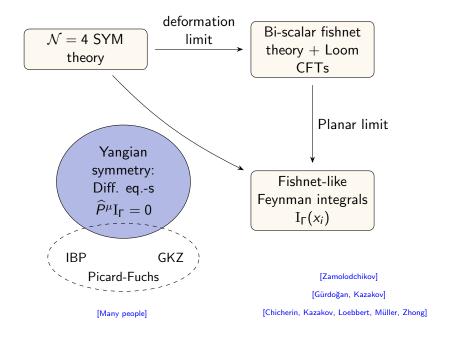
Fishnets and differential equations

Victor Mishnyakov Nordita

Fishnets, Southampton, 2025



 One corner of multi-loop calculations are differential equations satisfied by Feynman integrals. Effective computationally, good for classification and revealing hidden structures

 Productive approach - study special families: bananas/sunsets, traintracks, <u>fishnets</u>, . . .

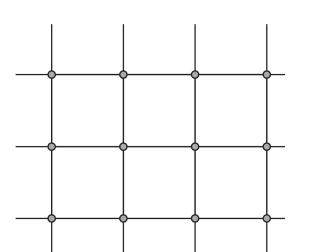
\approx Outline

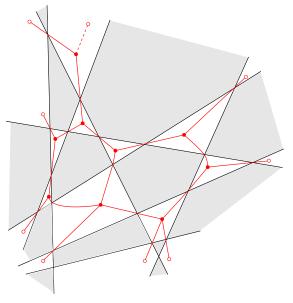
- Fishnet integrals and Yangian invariance.
- Differential equations for multi-loop integrals
- Where is the place for Yangian PDE's?
- Solving and understanding Yangian PDE's

Fishnet Feynman integrals

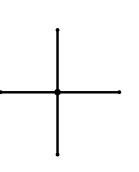
$$\mathrm{I}_{\Gamma}(x_{\mathsf{ext}}|D,\Delta) = \int \prod_{k \in \mathsf{internal}} d^D x_k \prod_{\langle i,j \rangle} \frac{1}{x_{ij}^{2\Delta_{ij}}}$$

- For each vertex $\sum\limits_{i}\Delta_{ij}=D$
- Planar Γ, special topology (Loom construction [VM, Levkovich-Maslyuk, Kazakov]), extra restrictions on Δ's

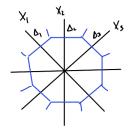




Graph drawn on a Baxter lattice



- The x_i^{μ} variables can be treated as position space, but also as dual momentum coordinates $x_i^{\mu} = p_i^{\mu} p_i^{\mu}$
- In this case, we have the momentum space integral of the dual graph.
- The one-loop polygon:



Yangian invariance

• Conformal $\mathfrak{so}(D+1,1)$ symmetry can be represented as:

$$P_{j}^{\mu} = -i\partial_{x_{j}^{\mu}}, \quad D_{j} = x_{j}^{\mu}\partial_{x_{j}^{\mu}} - i\Delta_{j}, \quad L_{j}^{\mu\nu} = \dots, \quad K_{j}^{\mu} = \dots$$
$$P^{\mu} \cdot I_{\Gamma}(D, \Delta_{i}|x_{i}) = \sum_{i} P_{j}^{\mu}I_{\Gamma}(D, \Delta_{i}|x_{i}) = 0$$

- the sum goes over all external vertices.
- Massless integrals are conformal if the sum of propagator dimensions in each vertex is D
- Only required for K^{μ} . Scale invariance is always there for massless integrals.

Additional symmetry, now we need the extra constraint on Γ:

$$\hat{P}^{\mu}I_{\Gamma}(D,\Delta|x)=0$$

with

$$\begin{split} \widehat{P}^{\mu} &= -\frac{i}{2} \sum_{j < k} [(L_{j}^{\mu\nu} + g^{\mu\nu} D_{j}) P_{k,\nu} - (j \leftrightarrow k)] + \sum_{j} s_{j} P_{j}^{\mu} = \\ &= \frac{1}{2} \sum_{j < k} \left(\delta^{\mu\alpha} \delta^{\lambda\nu} - \delta^{\nu\alpha} \delta^{\mu\lambda} - \delta^{\mu\nu} \delta^{\alpha\lambda} \right) (x_{j} - x_{k})^{\alpha} \frac{\partial^{2}}{\partial x_{j}^{\lambda} \partial x_{k}^{\nu}} + \\ &+ \sum_{i} s_{j} \frac{\partial}{\partial x_{i}^{\mu}} \end{split}$$

where P_j^{μ} etc. act on the j'th external leg and parameters $s_j(\Gamma)$ depend on the graph.

- Yangian algebra
$$Y(\mathfrak{g})$$
 [Drinfield] , quantization of $\mathfrak{g}[u]$

Generators:
$$J^*$$
 - level 0, J^* - level 1.

Relations:

• Generators: J^a - level 0, \hat{J}^a - level 1.

 $[J^a, J^b] = f_c^{ab}J^c$ $[\hat{J}^a, J^b] = f_c^{ab}\hat{J}^c$

 $\left[\hat{\mathbf{J}}_{a},\left[\hat{\mathbf{J}}_{b},\ \mathbf{J}_{c}\right]\right]-\left[\mathbf{J}_{a},\left[\hat{\mathbf{J}}_{b},\hat{\mathbf{J}}_{c}\right]\right]\sim\left(\mathbf{J}^{3}\right).$

• Yangian algebra $Y(\mathfrak{g})$ [Drinfield], quantization of $\mathfrak{g}[u]$

• Generators:
$$J^a$$
 - level 0, \hat{J}^a - level 1.

 $J^a = \sum_{k=1}^{n} J_k^a,$

 $\hat{\mathbf{J}}^a = f^a_{bc} \; \sum^n \; \; \mathbf{J}^c_j \; \mathbf{J}^b_k + \sum^n s_k \; \mathbf{J}^a_k, \label{eq:equation:equation:equation}$

• Generators:
$$J^a$$
 - level 0, \hat{J}^a - level 1.

- . Yangian algebra $Y(\mathfrak{g})$ [Drinfield] , quantization of $\mathfrak{g}[u]$
- Generators: J^a level 0, \hat{J}^a level 1.
- In our case $\mathfrak{g} = \mathfrak{so}(D+1,1)$. In
- Hence we are solving Yangian invariance for an infinite dimensional representation.

Equations for Feynman integrals

 ${\ \ }$ For the moment with masses and in momentum space, in general D.

Integration by parts identities [K. Chetyrkin, F. Tkachev (1981)]

$$0 = \int \prod_{I \in \mathsf{loop}} d^D q_I \frac{\partial}{\partial q_n^{\mu}} q_{\mathsf{IPB}}^{\mu} \prod_{\langle i,j \rangle} \frac{1}{\left((k_{ij}(p_{\mathsf{ext}},q))^2 - m_{ij}^2 \right)^{\nu_{ij}}} = \sum_{\vec{\nu}'} \mathrm{I}_{\Gamma}(\dots,\vec{\nu}')$$

- Using IPB one can express all integrals in terms of a few master integrals ${\rm I}_i$
- Differentiation of a master integral over external momenta produces again a sum over master integrals with shifted ν parameters and sometimes contracted lines

$$p_{ext}^{\mu} \frac{\partial}{\partial p_{ext}^{\mu}} I_i = \sum_i A_{ij} I_j$$

Schwinger/Feynman parameters and Gelfand-Kapranov-Zelevinsky equations:

Introduce Schwinger parameters

$$\frac{1}{(p^2 - m^2)^{\nu}} = \int_0^{\infty} d\alpha \, \alpha^{\nu - 1} e^{\alpha (p^2 - m^2)}$$

Momentum space integral is now Gaussian and can be taken

• The integral over parameters is then:

$$\int_0^\infty \prod_{i=1}^{n_E} d\alpha_i \, \alpha_i^{\nu_i-1} \delta \left(1 - \sum_{i=1}^n \alpha_i \right) \frac{F^{LD/2 - \sum \nu_i}}{U^{D/2(L+1) - \sum \nu_i}}$$

• Or after further transformation in the Lee-Pomeransky representation [Lee, Pomeransky] :

$$\int_0^\infty \prod_{i=1}^{n_E} d\alpha_i \, \alpha_i^{\nu-1} \left(F + U \right)^{\nu_0}$$

• F and U are the Symanzik polynomials in α_i 's, with coefficients made from masses and external momenta (invariants).

• For example, one-loop bubble:

$$U = \alpha_1 + \alpha_2$$

$$F = m_1^2 \alpha_1^2 + m_2^2 \alpha_2^2 + (p^2 + m_1^2 + m_2^2) \alpha_1 \alpha_2$$

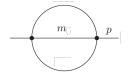
Picard-Fuchs equations

• Maximal cut of the sunset graph in D=2:

$$I_{\text{con}}(t=p^2) := \oint \frac{d\alpha_1 d\alpha_2 d\alpha_3}{F}$$

Where

$$F = (\alpha_1 + \alpha_2 + \alpha_3)(\alpha_1\alpha_2 + \alpha_3\alpha_2 + \alpha_1\alpha_3) m^2 - t\alpha_1\alpha_2\alpha_3$$



 Elliptic curve ⇒ two-dim cohomology ⇒ PF equation [Lairez, Vanhove] :

$$\left(t(t-m^2)(t-9m^2)\frac{d^2}{dt^2} + (3t^2 - 20m^2t + 9m^4)\frac{d}{dt} + (t-3m^2)\right)I_{(t)}(t) = 0$$

One can find (one of the solutions):

$$I_{\underbrace{\hspace{1cm}}}(t) = \sum_{n=1}^{\infty} \left(\frac{3^{1-2n}+5}{16n} \right) t^n = \frac{1}{16} \left(-5 \log \left(1 - \frac{t}{m^2} \right) - 3 \log \left(1 - \frac{t}{9m^2} \right) \right)$$

• Equations represent the geometry. Multiloop sunset graphs – CY $\ell-1$ -folds <code>[Bönisch, Duhr, Fischbach, Klemm, Nega],[de la Cruz, Vanhove],[Lairez, Vanhovel]</code>

• Take the one-loop bubble in Lee-Pomerasnky rep:

$$\mathrm{I}_{\mathsf{bubble}}(\mathit{m}_1^2, \mathit{m}_2^2, \mathit{p}^2) = \int (\mathit{U} + \mathit{F})^{-\mathit{D}/2} \mathrm{d} lpha_1 \mathrm{d} lpha_2$$

with the Symanzik polynomials

$$U = \alpha_1 + \alpha_2$$

$$F = m_1^2 \alpha_1^2 + m_2^2 \alpha_2^2 + (p^2 + m_1^2 + m_2^2) \alpha_1 \alpha_2$$

$$U + F = \alpha_1 + \alpha_2 + m_1^2 \alpha_1^2 + m_2^2 \alpha_2^2 + (p^2 + m_1^2 + m_2^2) \alpha_1 \alpha_2$$

• Lift the polynomials to generic coefficients.

$$I_{\mathsf{GKZ}}(z) = \int d\alpha_1 d\alpha_2 \alpha_1^{\nu_1} \alpha_2^{\nu_2} \left(z_1 \alpha_1 + z_2 \alpha_2 + z_3 \alpha_1^2 + z_4 \alpha_1 \alpha_2 + z_5 \alpha_2^2 \right)^{-D/2}$$

It satisfies [Gel'fand, Zelevinskii, Kapranov]

$$\left(\frac{\partial^2}{\partial z_*^2} - \frac{\partial^2}{\partial z_3 \partial z_5}\right) I_{\mathsf{GKZ}}(z) = 0, \left(\frac{\partial^2}{\partial z_1 \partial z_4} - \frac{\partial^2}{\partial z_3 \partial z_2}\right) I_{\mathsf{GKZ}}(z) = 0$$

- + scaling: $z_1\partial_1 + 2z_3\partial_3 + z_4\partial_4 + (1+\nu_1)I_{\mathsf{GKZ}}(z) = 0$, ...
- Such equations are obeyed by roots of polynomial equations, periods of toric Calabi-Yau manifolds, and generic Euler type integrals

· Lift the polynomials to generic coefficients.

$$I_{\mathsf{GKZ}}(z) = \int d\alpha_1 d\alpha_2 \alpha_1^{\nu_1} \alpha_2^{\nu_2} \left(z_1 \alpha_1 + z_2 \alpha_2 + z_3 \alpha_1^2 + z_4 \alpha_1 \alpha_2 + z_5 \alpha_2^2 \right)^{-D/2}$$

It satisfies [Gel'fand, Zelevinskii, Kapranov]

$$\left(\frac{\partial^2}{\partial z_4^2} - \frac{\partial^2}{\partial z_3 \partial z_5}\right) \mathrm{I}_{\mathsf{GKZ}}(z) = 0 \,, \\ \left(\frac{\partial^2}{\partial z_1 \partial z_4} - \frac{\partial^2}{\partial z_3 \partial z_2}\right) \mathrm{I}_{\mathsf{GKZ}}(z) = 0 \,.$$

- Solutions generalized hypergeomemetric series,
 A-hypergeometric functions
- F.I. also lie in this class of functions [E Nasrollahpoursamami (2016), K. Schultka (2018), P. Vanhove (2018), L. de la Cruz (2019)]:

$$\begin{split} &\mathrm{I}_{\mathsf{bubble}}(\textit{m}_{1}^{2},\textit{m}_{2}^{2},\textit{p}^{2}) = \\ &=& \mathrm{I}_{\mathit{GKZ}}(\textit{a}_{1,0} = 1,\textit{a}_{0,1} = 1,\textit{a}_{2,0} = \textit{m}_{1}^{2},\textit{a}_{2,0} = \textit{m}_{2}^{2},\textit{a}_{1,1} = \textit{m}_{1}^{2} + \textit{m}_{2}^{2} + \textit{p}^{2}) \end{split}$$

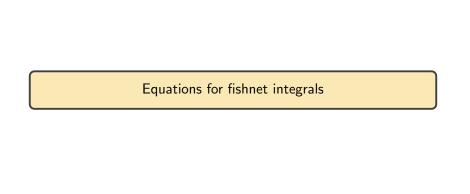
• Lift the polynomials to generic coefficients.

$$I_{\mathsf{GKZ}}(z) = \int d\alpha_1 d\alpha_2 \alpha_1^{\nu_1} \alpha_2^{\nu_2} \left(z_1 \alpha_1 + z_2 \alpha_2 + z_3 \alpha_1^2 + z_4 \alpha_1 \alpha_2 + z_5 \alpha_2^2 \right)^{-D/2}$$

It satisfies [Gel'fand, Zelevinskii, Kapranov]

$$\left(\frac{\partial^2}{\partial z_4^2} - \frac{\partial^2}{\partial z_3 \partial z_5}\right) I_{\mathsf{GKZ}}(z) = 0 \,, \\ \left(\frac{\partial^2}{\partial z_1 \partial z_4} - \frac{\partial^2}{\partial z_3 \partial z_2}\right) I_{\mathsf{GKZ}}(z) = 0 \,.$$

with integral representations. We only note that among the Euler type integrals associated with systems of the form (0.2) there are the integrals $\int \!\!\!/ I\!\!\!/ P_i \left(t_1,\ldots,\,t_n\right)^{\alpha_i} t_1^{\beta_i}\ldots t_n^{\beta_n} dt_1\ldots dt_n$, where P_i are polynomials, i.e., practically all integrals which arise in quantum field theory. A separate paper will be devoted to these integrals.



• Fishnet integrals are Yangian invariant, that is we have equations:

$$\left(\frac{1}{2} \sum_{j < k} \left(\delta^{\mu \alpha} \delta^{\lambda \nu} - \delta^{\nu \alpha} \delta^{\mu \lambda} - \delta^{\mu \nu} \delta^{\alpha \lambda} \right) (x_j - x_k)^{\alpha} \frac{\partial^2}{\partial x_j^{\lambda} \partial x_k^{\nu}} + \right.$$

$$+ \sum_{i} s_j \frac{\partial}{\partial x_i^{\mu}} \right) I_{\Gamma}(x) = 0$$

+ conformal symmetry:

$$\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}^{\mu}} I_{\Gamma}(x) = 0$$

$$\left(\sum_{i=1}^{n} x_{i}^{\mu} \frac{\partial}{\partial x_{i}^{\mu}} + \Delta_{i}\right) I_{\Gamma}(x) = 0$$

· Conformal symmetry implies that:

$$I_{\Gamma}(x) = \prod_{i < i} x_{ij}^{2\beta_{ij}} I_{\Gamma}^{(0)}(\xi^A)$$

Cross ratios:

$$\xi^A = \prod_{i < i} x_{ij}^{2\alpha_{ij}}$$

with

$$\alpha_{ij}^A = \alpha_{ji}^A, \ \alpha_{ii}^A = 0, \sum_i \alpha_{ij}^A = 0$$

Where A labels different $\frac{N(N-3)}{2}$ cross ratios $\left(ND - \frac{(D+1)(D+2)}{2}\right)$

· Conformal weights satisfy

$$eta_{ij} = eta_{ji} \ eta_{ii} = 0 \sum_i eta_{ij} = -\Delta_i$$

• The level one generator then rewrites in terms of cross ratios as [F.Loebbert, D.Müller, H.Münkler]:

$$\hat{P}^{\mu} = \sum_{ik} \frac{x_{jk}^{\mu}}{x_{jk}^2} \mathrm{PDE}_{jk}$$

ullet Equations ${
m PDE}_{ik}$ are purely in terms of cross ratios

• Example - the cross [F.Loebbert, D.Müller, H.Münkle]

$$I_{+}(x) = \int \frac{d^{D}x_{0}}{x_{10}^{2\Delta_{1}}x_{20}^{2\Delta_{2}}x_{30}^{2\Delta_{3}}x_{40}^{2\Delta_{4}}} =$$

$$= x_{14}^{2\Delta_{2}+2\Delta_{3}-D}x_{13}^{2\Delta_{4}-D}x_{34}^{-2\Delta_{3}-2\Delta_{4}+D}x_{24}^{-2\Delta_{2}}I_{+}^{(0)}(u,v)$$

Cross ratios are chosen as:

$$u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}, \quad v = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$$

$$\alpha_{12}^1 = \alpha_{34}^1 = -\alpha_{13}^1 = -\alpha_{24}^1 = 1$$

$$\alpha_{14}^2 = \alpha_{23}^1 = -\alpha_{13}^1 = -\alpha_{24}^1 = 1$$

• Out of $4 \cdot 3/2 = 6$ PDE_{ik} only 2 are independent

$$0 = (\alpha \beta + (\alpha + \beta)(u\partial_{u} + v\partial_{v}) + + (u\partial_{u} + v\partial_{v})^{2} - u\partial_{u}^{2} - \gamma\partial_{u}) I_{+}^{(0)}(u, v)$$
$$0 = (\alpha \beta + (\alpha + \beta)(u\partial_{u} + v\partial_{v}) + + (u\partial_{u} + v\partial_{v})^{2} - v\partial_{v}^{2} - \gamma'\partial_{v}) I_{+}^{(0)}(u, v).$$

- 4-dim solution space Appel F₄ functions
- + choice of convergence region + symmetries + boundary conditions [F.Loebbert, D.Müller, H.Münkler]

• In D=2 and $\Delta_i=1/2$, change to coordinates

 $z\bar{z} = u$, $(1-z)(1-\bar{z}) = v$.

Then the integral is:

$$I_{+}(x) = \frac{1}{|x_{12}||x_{24}|} I_{+}^{(0)}(z,\bar{z}).$$

• The equations factorize into a holomorphic and anti-hol. part:

 $(1+4(2z-1)\partial_z+4z(z-1)\partial_z^2)I_1^{(0)}(z,\bar{z})=0$

•
$$I_{+}^{(0)}(z,\bar{z})$$
 - expressed via periods of an elliptic curve.

• For rectangular fishnets [Duhr, Klemm, Loebbert, Nega, Porkert] :

$$I_{\Gamma}(z) = \int \left(\prod_{j=1}^{\ell} \frac{\mathrm{d}x_j \wedge \ \mathrm{d}\bar{x}_j}{-2i} \right) \frac{1}{\sqrt{\left| P_{\Gamma}(x,z) \right|^2}}$$

• Expressed in terms of periods of the variety:

$$y^2 = P_{\Gamma}(x, z)$$

With the degrees of P_{Γ} being exactly such that they define CY manifold. ℓ -loop = ℓ -fold.

- The Yangian equations PDE_{ik} Picard-Fuchs equations for these CY.
- Generalizations . . .

• General form of the equation [VM, Levkovich-Maslyuk]

$$PDE_{ik} = 2\left(\sum_{l>j>i} - \sum_{l< j< i} + \sum_{l< k< i,j} - \sum_{l>k>i,j}\right) \chi_{iklj}\theta_{il}\theta_{jk} + \sum_{j\neq i} (\delta_{j>i} - \delta_{j< i})\theta_{ik}\theta_{ij} + \delta_{i>k} \left(2\sum_{j=k+1}^{i-1} \Delta_j + \Delta_i + D\right)\theta_{ik} - \delta_{i< k} \left(2\sum_{j=i+1}^{k-1} \Delta_j + \Delta_i + D\right)\theta_{ik} + 2(s_k - s_i)\theta_{ik}$$

where:

$$\chi_{iklj} = \frac{x_{ik}^2 x_{lj}^2}{x_{ij}^2 \chi_{Li}^2}, \quad \theta_{ij} = \sum_{i} \alpha_{ij}^A \xi^A \frac{\partial}{\partial \xi^A} + \beta_{ij}$$

You could solve a different problem: what are the possible Yangian invariant functions?

$$\hat{P}^{\mu}(s_{j}) \cdot F(x) = 0$$

$$\mathfrak{so}(D+1,1) \cdot F(x) = 0$$

• One finds (experimentally [VM, Levkovich-Maslyuk, Kazakov]):

$$s_{j+1} - s_j = -\frac{\Delta_j + \Delta_{j+1}}{2} - \sum_{i=1}^{l} (\tilde{\Delta}_i - D/2)$$

 Agree with the Loom and other approaches [Loebbert, Rüenaufer, Stawinski] - Disentangle the level-one \hat{P}^{μ} symmetry, from conformal symmetry

$$x_i^{\mu} \longrightarrow x_{ij}^2 \longrightarrow u, v, \dots$$

• The level-one operator is [VM, Levkovich-Maslyuk, Kazakov] :

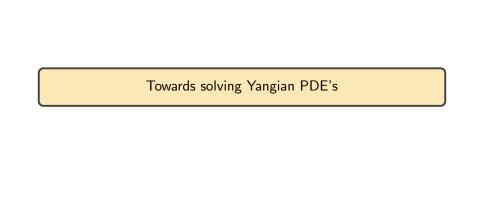
$$\hat{P}^{\mu} \rightarrow \sum_{i:} L_{iklj} + \hat{R}_{ik}$$

where

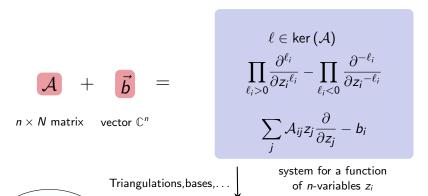
$$L_{iklj} = rac{\partial^2}{\partial (x_{ik}^2)\partial (x_{li}^2)} - rac{\partial^2}{\partial (x_{il}^2)\partial (x_{ki}^2)}$$
 [Pal,Ray]

• The level 0, i.e. conformal constraints:

$$\sum_{i\neq i} x_{ij}^2 \frac{\partial}{\partial (x_{ij}^2)} - \Delta_i$$



GKZ systems:



$$z_k = x_{ij}^2$$
 \mathcal{A}, \vec{b} -
special

Solutions:
$$\sum_{u \in \ker \mathcal{A}} \frac{1}{\prod_{i=1}^{N} \Gamma(\gamma_i + u_i + 1)} z_i^{u_i + \gamma_i}$$

$$\mathcal{A}\gamma = b^{\mathsf{T}}$$

Matrix and vector:

$$\mathcal{A} = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix} \Rightarrow \ker \mathcal{A} = \mathbb{Z} \cdot \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$$

 $\vec{b} = (b_1 \quad b_2)$

Equations:

$$\frac{\partial^2}{\partial z_1^2} - \frac{\partial^2}{\partial z_2 \partial z_3}$$

$$\frac{\partial}{\partial z_1^2} - \frac{\partial}{\partial z_2 \partial z_3}$$

$$\begin{vmatrix} z_1 \partial_1 + 2z_2 \partial_2 - b_1 \\ z_1 \partial_1 + 2z_3 \partial_3 - b_2 \end{vmatrix} \Rightarrow \Phi(z_1, z_2, z_3) = z_2^{\frac{b_1}{2}} z_3^{\frac{b_2}{2}} \Phi_0\left(\frac{z_1^2}{z_2 z_3}\right)$$

$$z_{1}\partial_{1} + 2z_{3}\partial_{3} - b_{2}$$

$$\Phi_{0} \left(x = \frac{z_{1}^{2}}{z_{2}z_{3}} \right) = c_{1} {}_{2}F_{1} \left(-\frac{b_{1}}{2}, -\frac{b_{2}}{2}; \frac{1}{2}; \frac{x}{4} \right) + c_{2}\sqrt{x} {}_{2}F_{1} \left(\frac{1}{2} - \frac{b_{1}}{2}, \frac{1}{2} - \frac{b_{2}}{2}; \frac{3}{2}; \frac{x}{4} \right)$$

- L_{iklj} are a special type of GKZ system for special type of \mathcal{A} [Gel'fand, Zelevinskii, Kapranov]
- . GKZ equations have known solutions in therms of $\mathcal{A}\text{-hypergeometric}$ functions and can be treated with hypergeometric methods
- Whenever \hat{R} -vanishes (n-cross, \dots) the level-one Yangian is equivalent to GKZ equations
- For our A's GKZ tell us that the space of solutions is $2^{N-1} N$ dimensional.

- When does \hat{R} vanish?
- At 4 points we get the conditions:

$$(\Delta_1 + \Delta_2 - \Delta_3 - \Delta_4)(\Delta_1 - \Delta_2 - \Delta_3 + \Delta_4)(\Delta_1 + \Delta_2 + \Delta_3 + \Delta_4 - D) = 0$$

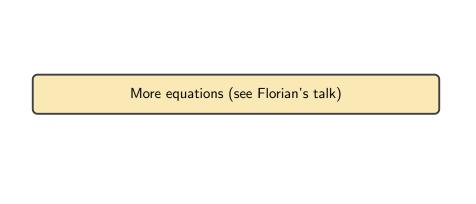
• At 5 points we get many conditions like:

$$2D = \Delta_{1} + \Delta_{2} + \Delta_{3} + \Delta_{4} + \Delta_{5}$$

$$D = \Delta_{1} + \Delta_{2} + \Delta_{3} + \Delta_{4} + \Delta_{5}$$

$$\Delta_{1} + \Delta_{4} + \Delta_{5} = \Delta_{2} + \Delta_{3}$$

$$D + \Delta_{3} = \Delta_{1} + \Delta_{2} + \Delta_{4} + \Delta_{5}$$
:



• Two-point "Yangian":

$$\begin{split} &\left(\frac{1}{2}\left(\delta^{\mu\alpha}\delta^{\lambda\nu}-\delta^{\nu\alpha}\delta^{\mu\lambda}-\delta^{\mu\nu}\delta^{\alpha\lambda}\right)(x_1-x_2)^{\alpha}\frac{\partial^2}{\partial x_1^{\lambda}\partial x_2^{\nu}}+\right.\\ &\left.+\Delta_1\frac{\partial}{\partial x_2^{\mu}}-\Delta_2\frac{\partial}{\partial x_1^{\mu}}\right)\cdot \underbrace{\phantom{\left(\frac{\lambda_1}{2}\right)^{2}}}_{x_2}\underbrace{\phantom{\left(\frac{\lambda_1}{2}\right)^{2}}}_{x_2}=0 \end{split}$$

- These are more peculiar equations, that exist depending on the topology, these extend to more intricate relations [[Loebbert,Mathur]]
- Massive fishnets [Loebbert, Miczajka, Müller, Münkler]
- In fact level one symmetry \hat{P}^{μ} holds independently from the conformal symmetry [Loebbert, Rüenaufer, Stawinski]

Fun things to do with Yangian PDE's:

Restrictions

- Suppose we have an equation for a function f(x, y). Can we find an equation for, say, g(x) = f(x, 0) or g(x) = f(x, x).
- A restriction \mathcal{D} -module is well defined for good systems of equations [Henn, Pratt, Sattelberger, Zoia],[Sattelberger, Sturmfels] .
 - GKZ systems are good allow restrictions.
- We do that already, when restricting the GKZ systems for Feynman integral to physical parameters.

• Variation 1: Non-conformal integrals

Variation 1: Non-conformal integrals

• Conformal \rightarrow scale + Poincare. To break constraint $\sum A = D$ add an external leg and then send it to in

 $\sum \Delta_i = D$, add an external leg and then send it to infinity. • By conformal symmetry this is equivalent to $x_{(n+1)j}^2 = 1$, $\forall j$

Hence $\sum \Delta_i = D - \Delta_{(n+1)}$

Recall that level-one symmetry is still preserved (the L_{iklj} part of the Yangian GKZ)

- Variation 1: Non-conformal integrals
- Recall the cross:

$$I_{+}(x_{1}, x_{2}, x_{3}, x_{4}) = \int \frac{d^{D}x_{0}}{x_{10}^{2\Delta_{1}} x_{20}^{2\Delta_{2}} x_{20}^{2\Delta_{3}} x_{40}^{2\Delta_{4}}} \quad x_{ij}^{2} = v_{ij}$$

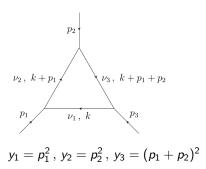
The GKZ operators:

$$\left\langle \frac{\partial^{2}}{\partial v_{12}\partial v_{34}} - \frac{\partial^{2}}{\partial v_{13}\partial v_{24}}, \frac{\partial^{2}}{\partial v_{12}\partial v_{34}} - \frac{\partial^{2}}{\partial v_{14}\partial v_{23}} \right\rangle$$

$$v_{12}\partial_{12} + v_{13}\partial_{13} + v_{14}\partial_{14} - \Delta_{1}$$

$$v_{12}\partial_{12} + v_{23}\partial_{23} + v_{24}\partial_{24} - \Delta_{2}$$

- · Variation 1: Non-conformal integrals
- After sending $x_4^{\mu} \to \infty$, $v_{i4} = 0$, we obtain a three point non-conformal integral. In dual momentum coordinates one-loop triangle



After restriction we have:

 $(y_3\partial_3 + y_2\partial_2 + y_1\partial_1) + (\Delta_1 + \Delta_2 + \Delta_3 - D/2)$

Variation 1: Non-conformal integrals

 $(y_1\partial_1^2 - y_3\partial_3^2) + \left(1 - \frac{D}{2} + \Delta_2 + \Delta_3\right)\partial_1 - \left(1 - \frac{D}{2} + \Delta_1 + \Delta_2\right)\partial_3$

 $(y_2\partial_2^2 - y_3\partial_3^2) + \left(1 - \frac{D}{2} + \Delta_1 + \Delta_3\right)\partial_2 - \left(1 - \frac{D}{2} + \Delta_1 + \Delta_2\right)\partial_3$

Exactly the equations for the non-conformal triangle/star

- Variation 1: Non-conformal integrals
- From the canonical GKZ approach we get:

$$I_{\triangle} = \int_{\Omega} \mathrm{d}^3 \alpha \frac{\alpha_1^{\alpha_1} \alpha_2^{\alpha_2} \alpha_3^{\alpha_3}}{\left(z_1 \alpha_1 + z_2 \alpha_2 + z_3 \alpha_3 + z_4 \alpha_1 \alpha_2 + z_5 \alpha_1 \alpha_3 + z_6 \alpha_2 \alpha_3\right)^{\beta}}$$

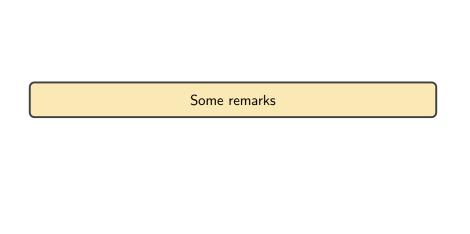
The GKZ system is exactly the Yangian one upon certain identifications. Moreover, the restriction to physical variables, requires $z_1 = z_2 = z_3 = 1$, $z_4 = (p_1 + p_2)^2$, $z_5 = p_1^2$, $z_6 = p_2^2$, which is the same restriction.

 Claim: the unrestricted/lifted GKZ system for the non-conformal star/triangle is the Yangian GKZ system for the conformal cross.

- Variation 1: Non-conformal integrals
- Variation 2: Gluing points.

Restrict to $x_1 = x_2$, or $x_{12}^2 = 0$, $x_{1j}^2 = x_{2j}^2$, for example, from double cross to a simplest ladder.

 Variation 3: The "non-GKZ" Yangian as restriction of a bigger GKZ system.



•	Fishnets	are	interesting	${\sf diagrams}$	to	study	from	the	PDE
	perspect	ive							

 We could potentially write have a complete solution for the Yangian PDE's

• The equations come from an algebra - the Yangian.

• GKZ systems are related to Calabi-Yau geometry. Is our observation related to some D-dimensional deformation of PF equation for fishnet CY periods in D=2?

• Fishnet theory - "completely perturbatively solvable" in some sense?