Quantum Spectral Curve for 2d Conformal Fishnet Theory

Paul Ryan

based on work in progress with: S. Ekhammar, N. Gromov, F. Levkovich-Maslyuk

Biscalar fishnet theory:

[Gurdogan, Kazakov] [Kazakov, Olivucci]

$$\mathcal{L}_{\phi} = N_c \operatorname{tr}[\phi_1^{\dagger} (-\partial_{\mu}\partial^{\mu})^{\omega} \phi_1 + \phi_2^{\dagger} (-\partial_{\mu}\partial^{\mu})^{\frac{D}{2}-\omega} \phi_2 + (4\pi)^{\frac{D}{2}} \xi^2 \phi_1^{\dagger} \phi_2^{\dagger} \phi_1 \phi_2].$$

Anisotropy parameter

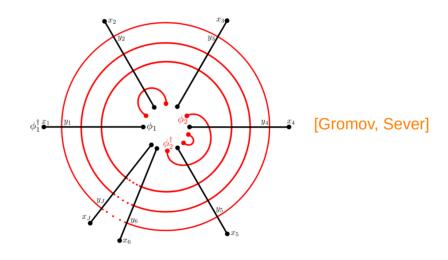
$$\omega \in \left(0, \frac{D}{2}\right)$$

Conformal + integrable in planar limit at any D

2-point functions dominated by wheel / spiral graphs

Microscopic realization as SO(1,D+1) spin chain in principal series representations

Exact quantum algebraic description at any value of the coupling, something we do not have in N=4 SYM



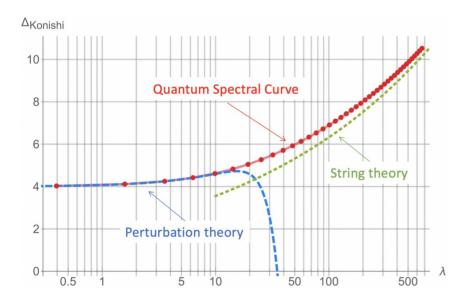
Natural playground to develop methods for exact solution of correlation functions, using Quantum Spectral Curve and Separation of Variables

Quantum Spectral Curve

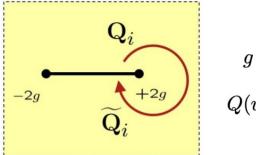
Exact solution of spectral problem of planar N=4 SYM

[Gromov, Kazakov, Leurent, Volin]

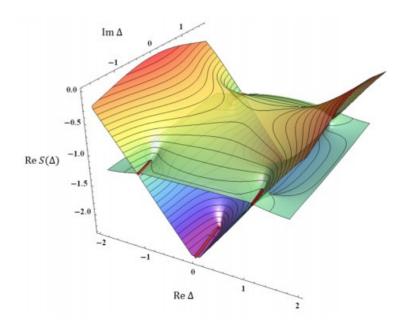
[see talks of F. Levkovich-Maslyuk + M. Preti]



Functional relations on Q(u) + analytic requirements



$$g = \frac{\sqrt{\lambda}}{4\pi}$$
$$Q(u) \sim u^{\Delta}$$

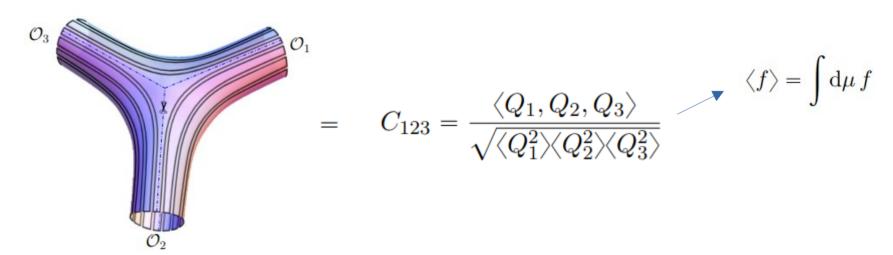


$$\Psi(\mathsf{x}) = \langle \mathsf{x} | \Psi \rangle = Q(\mathsf{x}_1) \dots Q(\mathsf{x}_L)$$

separated variables

[Sklyanin]

[Smirnov]



Evidence suggests structure constants simplify enormously when expressed in terms of Q-functions [Cavaglia, Gromov, Levkovich-Maslyuk]

[Giombi, Komatsu]

[Bercini, Homrich, Vieira]

Separation of Variables (SoV)

Major progress in understanding separation of variables for higher-rank SL(N) integrable models over the past decade

Operators [Gromov, Levkovich-Maslyuk, Sizov] [Maillet, Niccoli] [PR, Volin]

Functional SoV [Cavaglia, Gromov, Levkovich-Maslyuk, Primi, PR, Volin]

Correlators [Cavaglia, Gromov, Levkovich-Maslyuk] [Bargheer, Bercini, Cavaglia, Lai, PR] [Bercini, Homrich, Vieira]

But most progress for highest-weight representations. e.g. principal series reps under much less control

No QSC for fishnet in general D [see talk of V. Kazakov]

except D=4 starting from N=4 SYM

[Basso, Ferrando, Kazakov, Zhong]

Thermodynamic Bethe Ansatz for any D

In principal can derive QSC from TBA, but structure is more complicated for SO(1,D+1)

Impressive progress on developing Q-system / QSC technology for SO(2r) spin chains

[Ferrando, Frassek, Kazakov]

[Ekhammar, Shu, Volin]

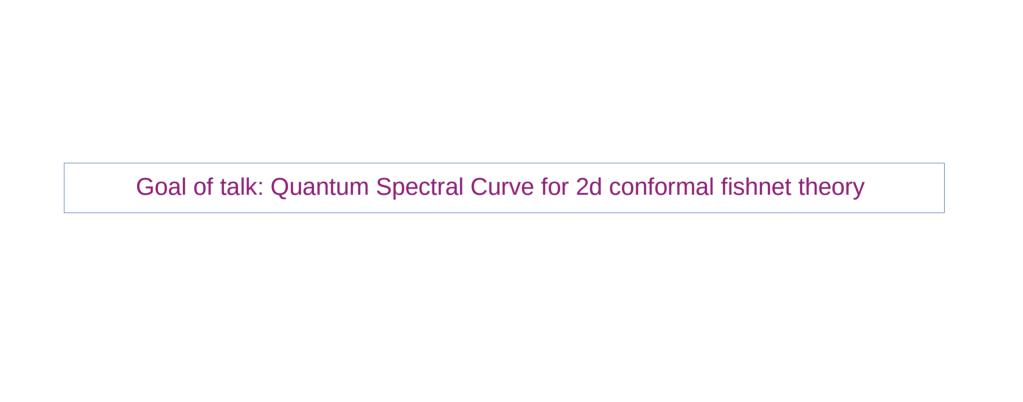
Most SoV methods only well understood for highest-weight representations, not principal series

[Derkachov, Korchemsky, Manashov]

All of these problems disappear for D=2

Symmetry SL(2,C), and SoV also understood

Spin chain description well-understood, can even bypass TBA



Remainder of talk

- 2d fishnet as SL(2,C) spin chain

- Baxter Q-operators

- Quantum Spectral Curve

- Tests and predictions

Conformal algebra
$$\mathfrak{so}(1,3)=\mathfrak{sl}(2)\oplus\mathfrak{sl}(2)$$
 Two copies, dotted and un-dotted

Spacetime coordinates x,y States labeled by $[\Delta,S]$

Complex coordinates
$$z = x + iy$$
, $\dot{z} = x - iy$

$$S^z=-z\partial-s, \quad S^+=\partial, \quad S^-=-z^2\partial-2sz$$

 $\dot{S}^z=-\dot{z}\dot{\partial}-\dot{s}, \quad \dot{S}^+=\dot{\partial}, \quad \dot{S}^-=-\dot{z}^2\dot{\partial}-2\dot{s}\dot{z}$ sl(2) generators

Representations labeled by a pair $\left[s,\dot{s}
ight]$

Unitary principal series representations: $\dot{s}^*=1-s$ [Derkachov, Korchemsky, Manashov]

For us: $\dot{s} = s$

First part of talk: isotropic wheel graphs

[Gurdogan, Kazakov] [Kazakov, Olivucci]

Graph-building operator

$$\hat{\mathcal{B}} \circ f(x_1, \dots, x_J) \equiv \frac{\xi^{2J}}{\pi^J} \int d^2y \prod_{i=1}^J \frac{1}{|x_j - y_j| |y_j - y_{j-1}|} f(y_1, \dots, y_J)$$

Complex propagator

$$\hat{\mathcal{B}} \circ f(z_1, \dots, z_J) = \frac{\xi^{2J}}{\pi^J} \int d^2 w \prod_{i=1}^J \frac{1}{[z_j - w_j]^{1/2} [w_j - w_{j-1}]^{1/2}} f(w_1, \dots, w_J)$$

$$[z-w]^{-\alpha} := (z-w)^{-\alpha}(\dot{z}-\dot{w})^{-\dot{\alpha}}$$

[Derkachov, Korchemsky, Manashov]

R-operator

$$[R_{12}(u)\Phi](z_1, z_2) := \int d^2w \, R_{(s_1, s_2, u)}(z_1, z_2 | w_1, w_2) \Phi(w_1, w_2)$$

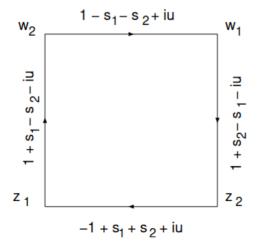
Satisfies Yang-Baxter equation using star-triangle relation

Kernel

$$R_{(s_1,s_2,u)}(z_1,z_2|w_1,w_2) = [z_1 - z_2]^{1-iu-s_1-s_2} [w_2 - z_1]^{iu-s_1+s_2-1}$$

$$\times [w_1 - w_2]^{-1-iu+s_1+s_2} [z_2 - w_1]^{-1+iu+s_1-s_2}$$

Graphically



with $\dot{u} - u = in$, $n \in \mathbb{Z}$

$$= [z - w]^{-\alpha} := (z - w)^{-\alpha} (\dot{z} - \dot{w})^{-\dot{\alpha}}$$

Transfer matrix

$$[\mathbb{T}_s(u)\Phi](z) := \int \mathrm{d}^2 w \, \mathcal{T}_s(z,w)\Phi(w)$$

Generic spins and inhoms each site

$$\mathcal{T}_s(z, w) = \int d^2 y \prod_{k=1}^L R_{s, s_k, u - \theta_k}(y_{k-1}, z_k | y_k, w_k)$$

For precise spins and inhoms:

$$s_k = \dot{s}_k = \frac{1}{4} \qquad \theta_k = 0$$

$$\lim_{\epsilon \to 0} \mathbb{T}_{1/4} \left(-\frac{i}{2} + \epsilon \right) \sim \hat{B} \,.$$

Can also build finite-dimensional transfer matrices

Lax operator
$$\mathcal{L}(u)=\left(egin{array}{cc} u+iS^z & iS^- \\ iS^+ & u-iS^z \end{array}
ight)$$
 and similarly for dotted

Yang-Baxter RLL relation
$$R_{ab}(u-v)\mathcal{L}_a(u)\mathcal{L}_b(v) = \mathcal{L}_b(v)\mathcal{L}_a(u)R_{ab}(u-v)$$

Transfer matrix
$$t(u) = \operatorname{tr}(\mathcal{L}_1(u) \dots \mathcal{L}_L(u))$$
 also dotted

 $R_{ab}(u) = u 1_{ab} + i P_{ab}$

Commutes with infinite dimensional T and dotted

$$[t(u), \mathbb{T}_s(v)] = 0, \quad [\dot{t}(\dot{u}), \mathbb{T}_s(v)] = 0, \quad [t(u), \dot{t}(\dot{v})] = 0$$

Simultaneously diagonalisable family of commuting integrals of motion

Conformal dimension related to global SL(2,C) spins

$$S^{z}\Psi(z_{1},\ldots,z_{L}) = h\Psi(z_{1},\ldots,z_{L})$$

$$\dot{S}^{z}\Psi(z_{1},\ldots,z_{L}) = \dot{h}\Psi(z_{1},\ldots,z_{L})$$

$$\dot{h} = \frac{1}{2}(\Delta - S)$$

$$\dot{h} = \frac{1}{2}(\Delta + S)$$

Can be extracted from transfer matrix at large u

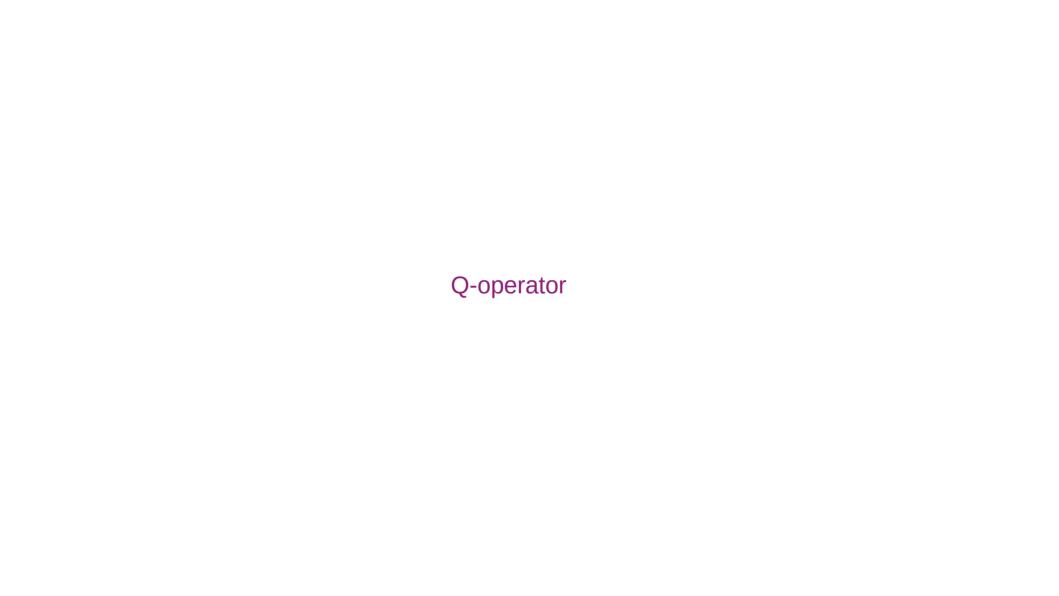
$$t(u) = 2u^L + u^{L-2}\left(h - h^2 - \frac{3L}{16}\right) + \dots$$
 Similarly for dotted

Baxter equation

$$(u - \frac{i}{4})^{L}q(u + i) - t(u)q(u) + (u + \frac{i}{4})^{L}q(u - i) = 0$$

Pure solutions $q_1\sim u^{h-L/4}$ UHPA q_a^{\downarrow} LHPA q_a^{\uparrow} UHPA and LHPA solutions related by $q_a^{\uparrow}=\Omega_a^{\ c}q_c^{\downarrow}$ $q_a^{\uparrow}=\Omega_a^{\ c}q_c^{\downarrow}$ $q_a^{\uparrow}=\Omega_a^{\ c}q_c^{\downarrow}$

But Baxter equation alone is not enough to fix the spectrum Need quantization condition to reduce to a discrete spectrum and need to inject coupling

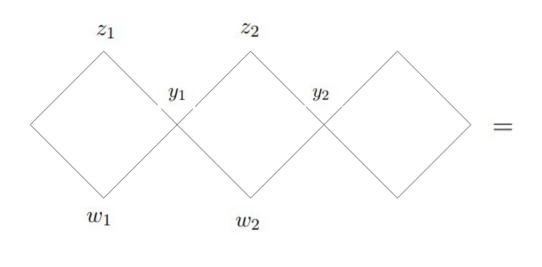


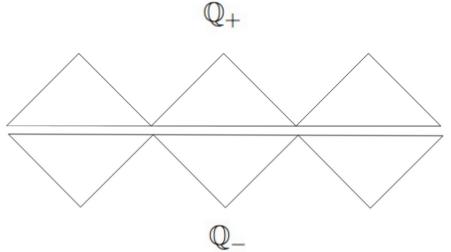
Factorize transfer matrix to get Q-operators

$$\mathbb{T}_s(u) = \rho_s(u)\mathbb{Q}_+(u+i(1-s))\mathbb{Q}_-(u+is)$$

(subtlety: this factorization does not work for generic spins and inhoms. From now on we assume homogeneous local s=1/4)

[Derkachov, Korchemsky, Manashov]





$$\mathbb{T}_{1/4}(-i/2) \sim B$$
 $\mathbb{Q}_{+}(i/4)\mathbb{Q}_{-}(-i/4) \sim B$ $\mathbb{T}_{0}(-i/4) \sim 1$ $\mathbb{Q}_{+}(3i/4)\mathbb{Q}_{-}(-i/4) \sim 1$

$$\lim_{\epsilon \to 0} \epsilon^L \frac{Q_+(\frac{3i}{4} - i\epsilon)}{Q_+(\frac{i}{4})} = \xi^{2L}$$

Now we need to relate coupling ξ to dimension Δ

So we need to relate $\,\mathbb{Q}_{+}\,\,$ to $\,\,q\,\,$

[Derkachov, Korchemsky, Manashov]

Restoring dependence on dotted spectral parameter we find that $\mathbb{Q}_+(u,\dot{u})$ satisfies Baxter eqn in both u and \dot{u}

Proof: trivial, just plug the kernel of Q operator into Baxter

So we have a decomposition

$$\mathbb{Q}_{+}(u,\dot{u}) = C^{a\dot{c}}q_{a}(u)\dot{q}_{\dot{c}}(\dot{u})$$

But which q ?

Need to better understand analytic properties of \mathbb{Q}_+

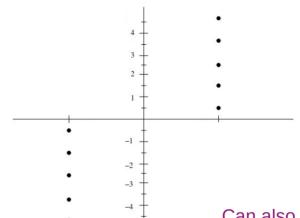
[Derkachov, Korchemsky, Manashov]

$$u \to +\infty$$

$$\mathbb{Q}_{+}(u, u) \simeq \lambda_1 u^{h+\dot{h}-L/2} + \lambda_2 u^{2-h-\dot{h}-L/2}$$

$$\mathbb{Q}_+(u+\tfrac{in}{2},u-\tfrac{in}{2})$$

Has a simple pole structure



Can also make analogy with unitary reps, where only two terms appear

Proposal:

$$\mathbb{Q}_{+}(u,\dot{u}) = \Gamma^{11}q_1^{\downarrow}(u)\dot{q}_1^{\uparrow}(\dot{u}) + \Gamma^{22}q_2^{\downarrow}(u)\dot{q}_2^{\uparrow}(\dot{u})$$

$$f^{[n]}(u) = f(u + \frac{in}{2})$$

Introduce functions

$$T_n(u) = q_a^{\uparrow[n]} \dot{q}_{\dot{c}}^{\downarrow[-n]} \Gamma^{a\dot{c}} \quad \dot{T}_n(u) = q_a^{\downarrow[n]} \dot{q}_{\dot{c}}^{\uparrow[-n]} \Gamma^{a\dot{c}}.$$

Proposal for quantization condition

$$T_n(u) = \dot{T}_n(u)$$

$$\dot{T}_n(u)$$
 analytic in the following strip $\frac{1}{4}-\frac{|n|}{2}-1<\mathrm{Im}(u)<-\frac{1}{4}+\frac{|n|}{2}+1$

 $T_n(u)$ is not, so gives non-trivial constraints

In this way quantization condition is very similar to unitary reps and 4D quantization condition

[Derkachov, Korchemsky, Manashov]

[Grabner, Gromov, Kazakov, Korchemsky]

Quantization condition can be expressed in a more natural way

$$T_n(u) = q_a^{\uparrow[n]} \dot{q}_{\dot{c}}^{\downarrow[-n]} \Gamma^{a\dot{c}} \quad \dot{T}_n(u) = q_a^{\downarrow[n]} \dot{q}_{\dot{c}}^{\uparrow[-n]} \Gamma^{a\dot{c}}.$$

$$T_n(u) = \dot{T}_n(u)$$

At the same time

$$q_a^{\uparrow} = \Omega_a^{\ c} q_c^{\downarrow}, \quad \dot{q}_{\dot{a}}^{\uparrow} = \dot{\Omega}_{\dot{a}}^{\ \dot{c}} \dot{q}_{\dot{c}}^{\downarrow}$$
$$\Omega_a^{\ c}(u+i) = \Omega_a^{\ c}(u)$$

So we can rewrite the quantization conditions as

$$\Omega_a^{\ c}\Gamma^{a\dot{a}} = \dot{\Omega}_{\dot{c}}^{\ \dot{a}}\Gamma^{c\dot{c}}$$

QSC proposal:

Baxter equation

 $h = (\Delta - S)/2, \ h = (\Delta + S)/2.$

$$(u - \frac{i}{4})^{L}q(u + i) - t(u)q(u) + (u + \frac{i}{4})^{L}q(u - i) = 0$$

$$t(u) = 2u^{L} + u^{L-2} \left(h - h^{2} - \frac{3L}{16} \right) + \dots$$

Transfer matrix

Pure solutions $q_1 \sim u^{h-L/4}, \quad q_2 \sim u^{1-h-L/4}$

UHPA and LHPA $q_a^{\uparrow} = \Omega_a^{\ c} q_c^{\downarrow}, \quad \dot{q}_{\dot{a}}^{\uparrow} = \dot{\Omega}_{\dot{a}}^{\ \dot{c}} \dot{q}_{\dot{a}}^{\downarrow}$

solutions related by

 $\Omega_{c}^{c}(u+i) = \Omega_{c}^{c}(u)$

Define

 $\mathbb{Q}_{+}(u) = \Gamma^{11} q_{1}^{\downarrow}(u) \dot{q}_{1}^{\uparrow} + \Gamma^{22} q_{2}^{\downarrow}(u) \dot{q}_{2}^{\uparrow}(u)$

Relation to coupling constant

$$\Omega_{a}{}^{c}\Gamma^{a\dot{a}} = \dot{\Omega}_{\dot{a}}{}^{\dot{a}}\Gamma^{c\dot{c}}$$

$$\lim_{\epsilon \to 0} \epsilon^L \frac{Q_+(\frac{3i}{4} - i\epsilon)}{Q_+(\frac{i}{4})} = \xi^{2L}$$

Quantization condition – very similar to AdS3/CFT2 [Cavaglia, Gromov, Stefanski, Torrielli] [Ekhammar, Volin]

Diagonalisation of graph building operator

Diagonalise spin operators

$$S^z \Psi(z_1, z_2) = h \Psi(z_1, z_2)$$

 $\dot{S}^z \Psi(z_1, z_2) = \dot{h} \Psi(z_1, z_2)$

$$\Psi(z_1, z_2) = \frac{1}{[z_1]^h [z_2]^h [z_1 - z_2]^{\frac{1}{2} - h}}$$

 $a(\alpha, \beta, \gamma) = a(\alpha)a(\beta)a(\gamma),$

Act with graph-building operator

$$\hat{B}\Psi(z_1, z_2) = \frac{\xi^4}{\pi^2} \int dw_1 dw_2 \frac{1}{[z_1 - w_1]^{\frac{1}{2}} [z_2 - w_2]^{\frac{1}{2}} [w_1 - w_2]^{\frac{1}{2}} [w_2 - w_1]^{\frac{1}{2}}} \Psi(w_1, w_2)$$

Apply star-triangle relation

$$\hat{B}\Psi(z_1, z_2) = \xi^4 a \left(\frac{1}{2}, \frac{3}{2} - h, h\right) a \left(\frac{1}{2}, 1 - h, h + \frac{1}{2}\right) \Psi(z_1, z_2)$$

$$\hat{B}\Psi = \Psi$$

 $a(\alpha) = \frac{\Gamma(1 - \dot{\alpha})}{\Gamma(\alpha)}$

$$\frac{1}{4}(1+S-\Delta)(-1+S+\Delta) = \xi^4$$

Solving Baxter equation

Exact UHPA solution
$$q(u)=i\frac{\Gamma(-iu+\frac{3}{4})}{\Gamma(-iu+\frac{1}{4})}{}_3F_2(iu+3/4,1-h,h;\tfrac{3}{2},1;1)$$

But mixed asymptotics

need to purify

$$q_{1,2}^{\downarrow,\uparrow} = a(u)q(u) + b(u)q(-u)$$

Periodic functions

$$q_{\pm}^{\downarrow}(u) = (\mp \cos(h\pi) - \sin(h\pi) \coth(\pi u - \frac{3i}{4}))q(u) + \tanh(\pi u - \frac{3i}{4})q(-u)$$
$$q_{\pm}^{\uparrow}(u) = \tanh(\pi u + \frac{3i}{4})q(u) + (\pm \cos(h\pi) - \sin(h\pi) \coth(\pi u + \frac{3i}{4}))q(-u)$$

Play games with hypergeometric and impose quantisation condition

Perfectly match direct diagonalisation

$$\frac{1}{4}(1+S-\Delta)(-1+S+\Delta) = \xi^4$$

Can try to develop perturbation theory

Significantly more complicated than in N=4 SYM at leading order

SL(2) sector operators with length L=2
$$q_1(u+\tfrac{i}{2})q_2(u-\tfrac{i}{2})-q_1(u-\tfrac{i}{2})q_2(u+\tfrac{i}{2})=\frac{1}{u^2}$$
 polynomial η -function

$$q_1(u + \frac{i}{2})q_2(u - \frac{i}{2}) - q_1(u - \frac{i}{2})q_2(u + \frac{i}{2}) = \left(\frac{\Gamma(\frac{1}{4} - iu)}{\Gamma(\frac{3}{4} - iu)}\right)^L$$

Can formally solve but not very useful

Instead we can do numerics

[see talk of F. Levkovich-Maslyuk]

Large-u expansion

$$q_1 = u^{h-L/4} \left(1 + \frac{c_{1,1}}{u} + \frac{c_{1,2}}{u^2} + \dots \right)$$
$$q_2 = u^{1-h-L/4} \left(1 + \frac{c_{2,1}}{u} + \frac{c_{2,2}}{u^2} + \dots \right)$$

Use Baxter eqn to shift near real line

 $\Omega_a^{\ c}$ is periodic with known poles so admits expansion

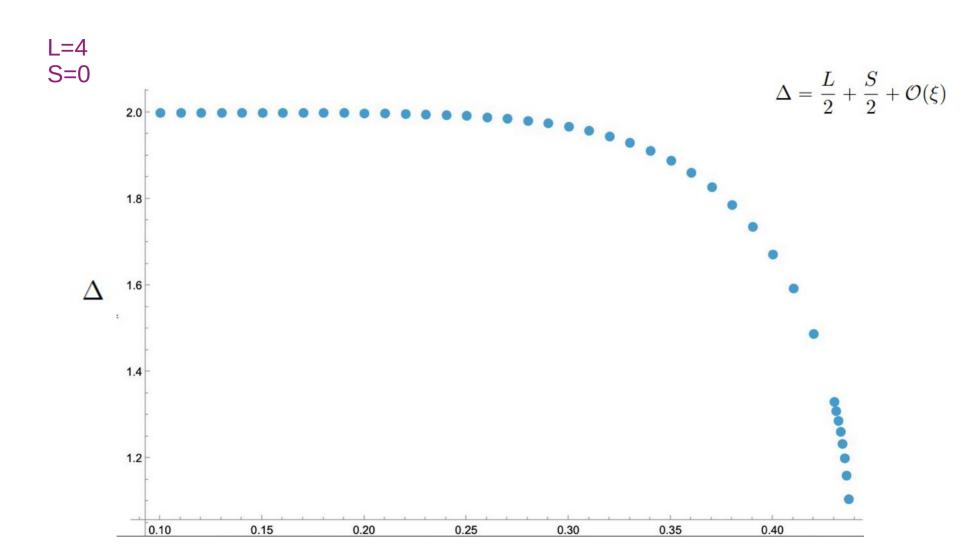
$$\Omega_a^c = \delta_a^c + \sum_{n=1}^L \frac{\omega_{a,n}^c}{(1 - i e^{2\pi u})^n}$$

On the other hand $\,\Omega_a^{\,\,c}$ can be computed directly from q's

$$\Omega_a^{\ c} = \epsilon^{cd} \frac{q_a^{\uparrow} q_d^{\downarrow - -} - q_a^{\uparrow - -} q_d^{\downarrow}}{q_1^{\downarrow} q_2^{\downarrow - -} - q_1^{\downarrow - -} q_2^{\downarrow}}$$

so these can be computed

Finally impose
$$\Omega_a^{\ c}\Gamma^{a\dot{a}}=\dot{\Omega}_{\dot{c}}^{\ \dot{a}}\Gamma^{c\dot{c}} \quad \text{ and } \qquad \lim_{\epsilon\to 0}\epsilon^L\frac{Q_+(\frac{3i}{4}-i\epsilon)}{Q_+(\frac{i}{4})}=\xi^{2L}$$



$$\Delta = L/2 - \xi^{2L} \frac{2\pi^L}{(L-1)!} \left(\frac{d}{d\epsilon} \right)^{L-1} \left| \frac{\Gamma^L(1+\epsilon)\Gamma^L(1-\epsilon)}{\Gamma^L(3/2+\epsilon)\Gamma^L(-1/2-\epsilon)} \left[\sum_{k=0}^{\infty} \frac{\Gamma^L(1/2+k-\epsilon)}{\Gamma^L(1+k-\epsilon)} \right]^2 \right|$$

$$\Delta = \frac{3}{2} + \gamma_1 \xi^6 + \dots$$

To very high numerical accuracy we found $\gamma_1 = -\frac{4\pi^4}{\Gamma(\frac{3}{4})^8} \sim -76.623$

We can now try to match with QSC prediction. We find perfect agreement!

YQSC - Ylloop

 $-9.830398403384758223132184995031562842665567753624513147165203929709706161995657774624406939034157817 \times 10^{-35} \times 10^$

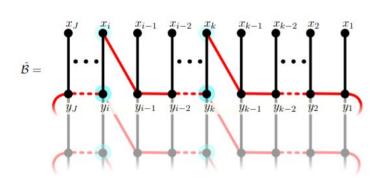
Using QSC we then computed the anomalous dimension for the next few S. They take the form

$$\gamma_1 = -a(S) \frac{\pi^4}{\Gamma(\frac{3}{4})^8}, \quad a(S) = \left\{ \frac{2}{3}, \frac{5}{14}, \frac{75}{308}, \frac{65}{352}, \frac{1989}{13376} \right\}. \quad \text{to very high numerical accuracy}$$

We found these could be generated by

$$\gamma_1 = -\frac{2\sqrt{2}\pi^{5/2}}{\Gamma\left(\frac{3}{4}\right)^6} \frac{\Gamma\left(\frac{S}{2} + \frac{1}{4}\right)\Gamma\left(\frac{S}{2} + \frac{1}{2}\right)}{\Gamma\left(\frac{S}{2} + \frac{3}{4}\right)\Gamma\left(\frac{S}{2} + 1\right)}$$

Local section of graph-building operator with magnons



$$\chi_0(x) = \phi_1^\dagger(x) \qquad \chi_1(x) = \phi_1^\dagger(x)\phi_2^\dagger(x)$$
 No magnon magnon
$$\chi_{-1}(x) = \phi_2(x)\phi_1^\dagger(x) \qquad \chi_{\bar 0}(x) = \phi_2(x)\phi_1^\dagger(x)\phi_2^\dagger(x)$$
 anti-magnon magnon-anti-magnon pair

Can get graph-building operator for generic set-up by changing local spins and inhomogeneities $s_{lpha}, \vartheta_{lpha}$

[Gromov, Sever - in 4D]

fields
$$\begin{vmatrix} s_{\alpha} & \theta_{\alpha} \end{vmatrix}$$

$$\phi_{1}^{\dagger}(x_{\alpha}) & \begin{vmatrix} \frac{1}{4} & 0 \\ \phi_{2}^{\dagger}(x_{\alpha})\phi_{1}^{\dagger}(x_{\alpha}) & \frac{1}{2} & +\frac{i}{4} \\ \phi_{1}^{\dagger}(x_{\alpha})\phi_{2}(x_{\alpha}) & \frac{1}{2} & -\frac{i}{4} \\ \phi_{2}^{\dagger}(x_{\alpha})\phi_{1}^{\dagger}(x_{\alpha})\phi_{2}(x_{\alpha}) & \frac{3}{4} & 0 \end{vmatrix}$$

$$\mathbb{T}_s(u) = \operatorname{tr} \left(\mathcal{L}_{s,s_1}(u - \vartheta_1) \dots \mathcal{L}_{s,s_L}(u - \vartheta_L) \right)$$

$$\lim_{\epsilon \to 0} \mathbb{T}_{1/4} \left(-\frac{i}{2} + \epsilon \right) \sim \hat{B}$$

In principal we can now repeat the construction of the Q-operators by trying to factorize the transfer matrix

For generic set-up of spins and inhomogeneities this is actually a very difficult problem

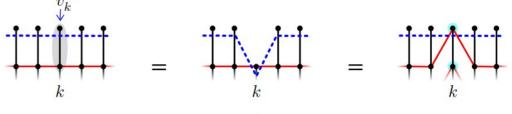
Reason: for generic spins and inhoms the kernel of the Q-operator can itself be an integral of propagators

However, for only magnons or only anti-magnons, we can do it.

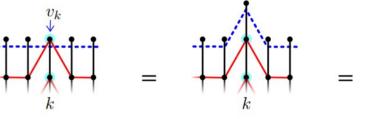
Thankfully, this is all we need!

$$[v_{\alpha}\Phi](z) = \int d^2w_{\alpha} \frac{\Phi(z_1, \dots, w_{\alpha}, \dots z_L)}{[z_{\alpha} - w_{\alpha}]^{\frac{1}{2}}}$$

(add vertical propagator)



$$h_{k+1,k}$$
 (add horizontal propagator)



$$r_{k+1,k} \equiv h_{k+1,k}^{-1} \circ v_k^{-1}$$
 (moves magnon right)
 $\bar{r}_{k+1,k} \equiv h_{k+1,k}^{-1} \circ v_{k+1}^{-1}$ (moves anti-magnon left)

Can move any configuration to standard configuration by conjugation (only magnons or anti-magnons, all sitting beside each other)

So spectrum of conserved charges is invariant, so we can restrict to this set-up

Remainder of this talk: only magnons

Repeating the steps from the set-up without magnons we found exactly the same quantization conditions on the solutions of Baxter

$$\Omega_a^{\ c} \Gamma^{a\dot{a}} = \dot{\Omega}_{\dot{c}}^{\ \dot{a}} \Gamma^{c\dot{c}} \qquad \qquad \lim_{\epsilon \to 0} \epsilon^L \frac{Q_+(\frac{3i}{4} - i\epsilon)}{Q_+(\frac{i}{4})} = \xi^{2L}$$

Comparison with Thermodynamic Bethe Ansatz

One-magnon anomalous dimension valid for any D and an-isotropy

$$\gamma_{M=1} = \frac{-2\xi^2}{\Gamma\left(\frac{D}{2}\right)} + 2\xi^4 \frac{\psi(\delta) + \psi(\tilde{\delta}) - \psi\left(\frac{D}{2}\right) - \psi(1)}{\Gamma\left(\frac{D}{2}\right)^2} + O(\xi^6)$$

[Basso, Ferrando, Kazakov, Zhong]

L=2, D=2
$$\Delta = \frac{3}{2} - 2\xi^2 - 4\log(4)\,\xi^4 + \mathcal{O}(\xi^6)$$

Following the same numerical methods described for the setup with no magnons, we found a perfect match with the QSC prediction

Summary

Formulated QSC equations for any state in 2d conformal fishnet theory

First concrete example which doesn't require starting from parent N=4 SYM

Compared with data coming from other means (TBA, diagonalization of graph-building operator) and found perfect agreement

Found prediction for L=3 leading order anomalous dimension for any S

To do:

Extend to any D? Need to better understand SO(N) groups

Separation of variables?

Derive TBA from QSC?

