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Motivation 

• Many of the exact results concerning  supersymmetric gauge theories were obtained by 
either by localisation or by integrability, the two approaches being rather complementary 

• For the  SYM gauge theory and its deformations, integrability allows a precise 
determination of the spectrum of conformal dimensions via the QSC approach 

• The construction of the QSC was achieved through a combination of algebraic methods, 
based on the fusion properties of transfer matrices  

• An equivalent formalism for correlation functions is less developed and the most reliable 
descriptions is based on the form factor (aka hexagon) expansion 

• In some simple cases the form factor expansion can be repackaged in terms of (Fredholm) 
determinants, that can be studied with specific methods, see Grisha’s talk 

• Reducing the supersymmetry by twisting reveals some of the integrable structure and 
allows to make contact with localisation. This is the case in particular for the  orbifolds of 

 SYM 

𝒩 = 4

ZK
𝒩 = 4



Outline  

• Correlation function in  SYM and the geometric decomposition in terms of 
hexagons, cf. Benjamin’s talk 

• The simplest four-point correlation function as a Fredholm determinant and the octagon 
kernel 

• The  SYM quiver theory as a  orbifold of  SYM and results from 
supersymmetric localisation  

• Results for three point function of  SYM quiver theory from integrability 

• Conclusion and outlook 

𝒩 = 4

𝒩 = 2 ZK 𝒩 = 4
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The hexagon decomposition of correlation functions
[Basso, Komatsu, Vieira, 15]

• the asymptotic part of the three point function can be written as a sum over partitions for  
the three groups of rapidities

data of the three operators, namely the charges of the global symmetry group PSU(2, 2|4)
and the charges of the infinite symmetry group associated to integrability. The latter ones,

dependent on the coupling constant g, can be encapsulated, at least in the regime of in the

small g, by three collections of rapidities u1,u2,u3, each associated to one of the operators

O1(x1), O2(x2), O3(x3). At g = 0 the three sets of rapidities are determined by Bethe

ansatz equations for three PSU(2, 2|4) spin chains with lengths L1, L2 and L3. At non-zero

values of the coupling constant g, the spin chains acquire long-range interaction and the

so-called asymptotic Bethe ansatz is not exact anymore. The long-range corrections can be

interpreted as coming from virtual particles circulating in the so-called mirror channel, where

time and space are interchanged. These virtual particles are called mirror particle. Their

contribution to the spectrum of conformal dimensions �(g) can be exactly determined via

a set of functional equations known under the name of Quantum Spectral Curve, equivalent

to a system of Thermodynamic Bethe Ansatz equations. In the large volume limit the

contribution of the virtual particles is exponentially small.

Through the AdS/CFT correspondence [23], the three-point function is dual to a three-

string interaction connecting three strings with energies �1, �2, �3. The rapidities can

be then associated to the momenta of excitation modes, or magnons, propagating on the

1+1 dimensional worldsheet. For a particular subset of the operators, the BPS operators,

the conformal dimensions do not depend on the coupling constant g and the associated

rapidities are trivial (i.e. infinite). We are going to use a bullet to symbolise a non-BPS

operator and an empty circle to denote the BPS one with the same global charges. To

remove some trivial combinatorial factors we are dividing the three-point function by the

three-point function of the corresponding BPS operators, e.g.

C••�
123 ⌘ C••�

123

C���
123

p
N1N2 (2.2)

denotes the three-point function of two non-BPS and one BPS operator. In the above

formula,
p
Ni are the normalisation of the three incoming states, which can be expressed

in terms of the Gaudin determinants. In this work we are not considering the explicit

expression of the norms, and prefer considering the unnormalised structure constants C123
defined in (2.2) instead of the normalised structure constants C123. The semiclassical limit

of the norms in the absence of mirror correction was taken in [7, 24].

An all-loop prescription to compute the three-point function was given in [1]. The

guiding principle of the proposal is to split the worldsheet of the three interacting strings

into two overlapping hexagons, and then sum over all possible ways of distributing the

magnon excitations between the two hexagons, u1 = ↵1 [ ↵̄1,u2 = ↵2 [ ↵̄2,u3 = ↵3 [ ↵̄3

as illustrated in figure 2.1. In the absence of the mirror corrections (asymptotic limit) the
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Figure 2.1: A possible arrangement of excitations for the hexagon form factors.

[C•••
123 ]

asympt =
X

↵i[↵̄i=ui

3Y

i=1

(�1)|↵1|+|↵2|+|↵3| w`31(↵1, ↵̄1)w`12(↵2, ↵̄2)w`23(↵3, ↵̄3)

⇥ H(↵1|↵3|↵2)H(↵̄2|↵̄3|↵̄1) . (2.3)

Explicit expressions for transition factors w`i�1,i(↵i, ↵̄i) and hexagon form factors H(↵1|↵3|↵2)

were proposed in [1] and will be given later. The building blocks of the hexagon form factors

are the bi-local hexagon amplitudes h(u, v) proposed in [25] and the elements of the Beisert’s

scattering matrix [26]. Here we are going to consider only structure constants of operators

from the rank-one sectors su(2) and sl(2) and we are therefore not going to use the matrix

structure of the hexagon form factors.

Figure 2.2: Vacua and su(2) excitations in the reservoir picture of BKV [1].

To connect with the weak-coupling picture and the corresponding notations, it is useful

to represent the three-point function we consider in the reservoir picture of [1] represented

6

answer is

1 11

22 33

Figure 2.1: A possible arrangement of excitations for the hexagon form factors.

[C•••
123 ]

asympt =
X

↵i[↵̄i=ui

3Y

i=1

(�1)|↵1|+|↵2|+|↵3| w`31(↵1, ↵̄1)w`12(↵2, ↵̄2)w`23(↵3, ↵̄3)

⇥ H(↵1|↵3|↵2)H(↵̄2|↵̄3|↵̄1) . (2.3)

Explicit expressions for transition factors w`i�1,i(↵i, ↵̄i) and hexagon form factors H(↵1|↵3|↵2)

were proposed in [1] and will be given later. The building blocks of the hexagon form factors

are the bi-local hexagon amplitudes h(u, v) proposed in [25] and the elements of the Beisert’s

scattering matrix [26]. Here we are going to consider only structure constants of operators

from the rank-one sectors su(2) and sl(2) and we are therefore not going to use the matrix

structure of the hexagon form factors.

Figure 2.2: Vacua and su(2) excitations in the reservoir picture of BKV [1].

To connect with the weak-coupling picture and the corresponding notations, it is useful

to represent the three-point function we consider in the reservoir picture of [1] represented

6

✂︎

• contribution of virtual particles exponentially suppressed if the bridges 
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• sewing back over the black (dotted) lines: insertion of an arbitrary number of virtual particles
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data of the three operators, namely the charges of the global symmetry group PSU(2, 2|4)
and the charges of the infinite symmetry group associated to integrability. The latter ones,

dependent on the coupling constant g, can be encapsulated, at least in the regime of in the

small g, by three collections of rapidities u1,u2,u3, each associated to one of the operators

O1(x1), O2(x2), O3(x3). At g = 0 the three sets of rapidities are determined by Bethe

ansatz equations for three PSU(2, 2|4) spin chains with lengths L1, L2 and L3. At non-zero

values of the coupling constant g, the spin chains acquire long-range interaction and the

so-called asymptotic Bethe ansatz is not exact anymore. The long-range corrections can be

interpreted as coming from virtual particles circulating in the so-called mirror channel, where

time and space are interchanged. These virtual particles are called mirror particle. Their

contribution to the spectrum of conformal dimensions �(g) can be exactly determined via

a set of functional equations known under the name of Quantum Spectral Curve, equivalent

to a system of Thermodynamic Bethe Ansatz equations. In the large volume limit the

contribution of the virtual particles is exponentially small.

Through the AdS/CFT correspondence [23], the three-point function is dual to a three-

string interaction connecting three strings with energies �1, �2, �3. The rapidities can

be then associated to the momenta of excitation modes, or magnons, propagating on the

1+1 dimensional worldsheet. For a particular subset of the operators, the BPS operators,

the conformal dimensions do not depend on the coupling constant g and the associated

rapidities are trivial (i.e. infinite). We are going to use a bullet to symbolise a non-BPS

operator and an empty circle to denote the BPS one with the same global charges. To

remove some trivial combinatorial factors we are dividing the three-point function by the

three-point function of the corresponding BPS operators, e.g.

C••�
123 ⌘ C••�

123

C���
123

p
N1N2 (2.2)

denotes the three-point function of two non-BPS and one BPS operator. In the above

formula,
p
Ni are the normalisation of the three incoming states, which can be expressed

in terms of the Gaudin determinants. In this work we are not considering the explicit

expression of the norms, and prefer considering the unnormalised structure constants C123
defined in (2.2) instead of the normalised structure constants C123. The semiclassical limit

of the norms in the absence of mirror correction was taken in [7, 24].

An all-loop prescription to compute the three-point function was given in [1]. The

guiding principle of the proposal is to split the worldsheet of the three interacting strings

into two overlapping hexagons, and then sum over all possible ways of distributing the

magnon excitations between the two hexagons, u1 = ↵1 [ ↵̄1,u2 = ↵2 [ ↵̄2,u3 = ↵3 [ ↵̄3

as illustrated in figure 2.1. In the absence of the mirror corrections (asymptotic limit) the
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The hexagon as a non-local form factor

• the hexagon can be seen as the infinite-volume form factor of a twist-like operator 
inducing a curvature excess of 180  degrees, similar to [Cardy, Castro-Alvaredo, Doyon, 06]
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Figure 2.3: The physical and bottom mirror excitations.

2.2 Results and comparison with strong coupling

In the case when the incoming operators correspond to semiclassical strings, the lengths

L1, L2, L3 of the three chains and the numbers of the magnon excitations M1, M2, M3 are

large.4 The semiclassical limit is controlled by a small parameter ✏ such that ✏Li and ✏Mi

remain finite when ✏ ! 0. This limit exists for any value of the ’t Hooft coupling g. In

addition to the semiclassical limit, one can take the strong coupling limit where the e↵ective

coupling g0 = ✏g remains finite when ✏ ! 0.

In general, we need to take into account the partitions of three sets of physical rapidities

and sum over all mirror excitations on the mirror edges, which is still open. Here we report

some modest progress, by taking the sum and the semiclassical limit in three particular

cases when the operators belong to the rank-one su(2) and sl(2) sectors:

• the expression of the asymptotic part of the structure constant for one non-BPS and

two BPS operators, [C•��
123 ]

asympt for any value of the coupling constant,

• the expression of the asymptotic part of the I-I-II structure constant5 for three non-

BPS operators belonging to two di↵erent su(2) or sl(2) sectors, [C•••
123 ]

asympt, for any

value of the coupling constant,

• the expression of the bottom mirror contribution for one non-BPS and two BPS

operators, [C•��
123 ]

bottom in the strong coupling limit.

4Based on the experience with the spectrum [36], we may expect that, for sl(2), the results for the

semiclassical strings can be applied safely to small values of ✏Li.
5 The I-I-I type structure constant remains out of reach of our method for the moment.

8

E(✓) = M cosh ✓

✓ ! ✓ + i⇡

✓ ! ✓ + i⇡/2

bp1, bp2, bp3, bp4
ep1, ep2, ep3, ep4

log[C•••
123 ]

wrapping
su(2) =

X

{i,j,k}={1,2,3}

1

✏

I

U

du

2⇡

⇣
Li2

h
ei(bp

(i)+bp(j)�bp(k))
i
� Li2

h
ei(ep

(i)+ep(j)�ep(k))
i⌘

+
1

✏

I

U

du

2⇡

⇣
Li2

h
ei(bp

(3)+bp(1)+bp(2))
i
� Li2

h
ei(ep

(3)+ep(1)+ep(2))
i⌘

�

3X

j=1

1

✏

I

U

du

2⇡

⇣
Li2

h
e2ibp

(j)
i
� Li2

h
e2iep

(j)
i⌘

�

References

27

E(✓) = M cosh ✓

✓ ! ✓ + i⇡

✓ ! ✓ + i⇡/2

bp1, bp2, bp3, bp4
ep1, ep2, ep3, ep4

log[C•••
123 ]

wrapping
su(2) =

X

{i,j,k}={1,2,3}

1

✏

I

U

du

2⇡

⇣
Li2

h
ei(bp

(i)+bp(j)�bp(k))
i
� Li2

h
ei(ep

(i)+ep(j)�ep(k))
i⌘

+
1

✏

I

U

du

2⇡

⇣
Li2

h
ei(bp

(3)+bp(1)+bp(2))
i
� Li2

h
ei(ep

(3)+ep(1)+ep(2))
i⌘

�

3X

j=1

1

✏

I

U

du

2⇡

⇣
Li2

h
e2ibp

(j)
i
� Li2

h
e2iep

(j)
i⌘

�

References

27

� = g2YMN = R4/(↵0)2

gs ⇠ 1/N

SD=10 = �
1

g2YM

Z
d10x

✓
1

4
TrFMNF

MN +
1

2
Tr �M

DM  

◆
(104)

TrZZXXZZXZZZ...(x)

1
X

 

| ih |

x[±a] +
1

x[±a]
=

u± ia/2

g

g =

p
�

4⇡
`12, `23, `31 >> 0

`ij =
1

2
(Li + Lj � Lk)

|�Ai
i i

References

31

:                   state

|{n}i =
NX

k=1

!nk  +

k |0i

|{n1, n2}i =
NX

k1<k2

Pn1,n2(!
k1 ,!k2)  +

k2
 +

k1
|0i

V (zi, zj) =
zizj

(zi � zj)2
= � 4

sin2 ⇡(i� j)/N

q 6= 1

ek = (f+

k + f+

k+1
)(fk + fk+1)

Hl =
[N ]q
N

NX

i<j

V(i� j) Sl
[i,j] , Hr =

[N ]q
N

NX

i<j

V(i� j) Sr
[i,j] , (138) qHSL

V(k) ⌘ 1

(q!k � q�1)(q!�k � q�1)
=

1

4 sin(⇡k/N + ⌘) sin(⇡k/N � ⌘)
, ! ⌘ e2⇡ i/N ,

(139) VqHS

[Hl,Hr] = [Hl,G] = [G,Hr] , (140)

G GN = 1

H =
1

2
(Hl +Hr) (141)

psu(2|2)L ⇥ psu(2|2)R

References

43

|{n}i =
NX

k=1

!nk  +

k |0i

|{n1, n2}i =
NX

k1<k2

Pn1,n2(!
k1 ,!k2)  +

k2
 +

k1
|0i

V (zi, zj) =
zizj

(zi � zj)2
= � 4

sin2 ⇡(i� j)/N

q 6= 1

ek = (f+

k + f+

k+1
)(fk + fk+1)

Hl =
[N ]q
N

NX

i<j

V(i� j) Sl
[i,j] , Hr =

[N ]q
N

NX

i<j

V(i� j) Sr
[i,j] , (138) qHSL

V(k) ⌘ 1

(q!k � q�1)(q!�k � q�1)
=

1

4 sin(⇡k/N + ⌘) sin(⇡k/N � ⌘)
, ! ⌘ e2⇡ i/N ,

(139) VqHS

[Hl,Hr] = [Hl,G] = [G,Hr] , (140)

G GN = 1

H =
1

2
(Hl +Hr) (141)

psu(2|2)L ⇥ psu(2|2)R

✓ ! ✓ +
i⇡

2

|�Ȧi
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dynamical part matrix part [Beisert, 06]

• solution for the hexagon form factors from form factor bootstrap (form factor axioms) 
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FIG. 4. A mirror transformation � : u ! u� moves an
excitation to a neighbouring edge. As illustrated here on
a simple example, we can iterate it to relate a creation
amplitude h with all particles at the top to the most
general hexagon process H where excitations can inhabit
any of the six edges.

Furthermore, combining symmetry arguments with el-
ementary bootstrap considerations hints at a simple and
natural generalization to multi-particle states. The con-
jecture is that the N -magnon hexagon amplitude (1) is
exactly given by

h
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where �A = �a| ↵ is a state in the fundamental SU(2|2)
multiplet and S is Beisert SU(2|2) S-matrix [32] with
dressing phase set to one. (f is a simple integer which
accommodates for the grading [34].) The multi-particle
formula (2) identifies the hexagon form factor with the
(factorized) scattering matrix elements up to the scalar
factor hij = h(ui, uj), which is a function of two magnon
rapidities. The latter can be constrained by crossing sym-
metry and argued to be given by
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where x± = x(u ± i

2 ) are familiar Zhukowsky variables
(with u/g = x + 1/x) and �12 is (half) the BES dressing
phase [35]. Accordingly, the hexagon form factor is as
depicted in figure 5, and its evaluation is straightforward,
as exemplified in appendices K and L. It shows, in the
end, some similarities with the pentagon transitions for
null Wilson loops, in that it factorizes into a dynamical
part (the product of h’s) and a matrix part (the S-matrix
element). An important di↵erence is that the relevant
symmetry group for the null Wilson loops was just SO(6)
whereas here it involves a more sophisticated supergroup,
leading, as a byproduct, to a coupling dependent matrix
part.

Relations (2) and (3) finalize our proposal, which pro-
vides, in principle, a complete non-perturbative recipe
for computing structure constants of any planar gauge
invariant operators in this theory. Of course, it is cru-
cial to sharpen it and verify its predictions on the sim-
plest possible examples. This is what the rest of paper is
about.
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FIG. 5. The multi-particle conjecture relates the hexagon
creation amplitude to a multi-particle scattering process
as depicted here.

III. PROPERTIES OF THE HEXAGON ANSATZ

In this section we elaborate on the properties of the
hexagon ansatz (2).

An equivalent way of thinking about our problem is by
introducing a vertex hh| which can be contracted against
three spin-chain states, like in [19–21], e.g.
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|�AȦi1 ⌦ |0i2 ⌦ |0i3

�
, (4)

for a single magnon on top of the first spin chain. We
use here an invariant notation where each operator-ket is
thought of as being made out of excitations on top of the
same BMN Z-vacuum. Implicit in there is the need to
actually rotate (and translate) the kets in order to get a
non-zero result compatible with R-charge conservation.
There are several realization of these rotations, one of
which is discussed in appendix B and applied (up to a
small twist) in the next section.

The symmetry group of each ket in (4) is the usual
one for excitations on top of the BMN vacuum, that is
the extended PSU(2|2)2 introduced by Beisert in [32].
The intersection of the three symmetry groups for the
three rotated vacua is a single PSU(2|2), which can be
thought of as a diagonal subgroup of symmetries of the
BMN vacuum, as explained in appendix B. This group
is nothing but the supersymmetrization of the obvious
bosonic group O(3)Lorentz ⇥ O(3)R�charge that preserves
3 points in space time and 3 (generic) null vectors in
‘R-space’.

As mentioned earlier, for low number of magnons,
this symmetry leaves very little freedom. For a single
magnon, as explained in appendix C, it fixes the form
factor to be [36]

h
aȧ = hh|�aȧi = ✏aȧ , h

↵↵̇ = hh|D↵↵̇i = N✏↵↵̇ , (5)

such that the only non-zero one point functions are those
corresponding to so-called longitudinal magnons, that is,
the two scalars Y = �12̇, Ȳ = �21̇ and the two deriva-
tives D = D12̇, D̄ = D21̇ polarized along the direction of
the three-point function. The relative weight N is rather
arbitrary, since it absorbs the normalization freedom be-
tween states of the PSU(2|2)2 n R3 magnon irrep (see
e.g. (C6)). It can be fixed to N = i in the commonly
used string frame normalization and to N = 1 in the
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element). An important di↵erence is that the relevant
symmetry group for the null Wilson loops was just SO(6)
whereas here it involves a more sophisticated supergroup,
leading, as a byproduct, to a coupling dependent matrix
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Relations (2) and (3) finalize our proposal, which pro-
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↔ µa(u)↔ e→εEa(u) ↔ (zz̄)→ipa(u)

(ς̇1, ς̇2, φ̇1, φ̇2)↔ (ς1,ς2,φ1,φ2)

ω = (1, 1, 1, 1)L ↔ ωR = (1, 1, 1, 1)L ↔ (↼,↼→1, 1, 1)R

h(u4ϑ, v) =
1

h(v, u)
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T (ω)
a = STra ω

ω
a = 4asω , (156)

T (ω)
a = STra ε

ω
a = 4asω , (157)

Imu > Imv > Imw

G(u, v) = ωa Sba(v, u) ωa
hab(u, v)

→ eip̃b(v)rω → e→ip̃a(u)rω + ei(p̃b(v)→p̃a(u))rω
ωa Sab(u, v) ωa

hba(v, u)
(158)

Ḡ(u, v) = ωa Sab(u, v) ωa
hba(v, u)

→ e→ip̃b(v)rω → eip̃a(u)rω + ei(p̃a(u)→p̃b(v))rω
ωa Sba(v, u) ωa

hab(u, v)
(159)
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Oε(g, z, z̄,ϑ, ϑ̄) = 1 +
↑∑

n=1

Xn(z, z̄,ϑ, ϑ̄) In,ε(z, z̄) (160)

In,ε(z, z̄) =
1

n!

↑∑

a1=1

. . .
↑∑

an=1

∫
du1 . . .

∫
dun

n∏

j=1

µ̄aj(uj, ϖ, z, z̄)↔
∏

j<k

Paj ,ak(uj, uk)

µaj(uj, ϖ, z, z̄) =
1↗
zz̄

sin aϱ
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↔ µa(u)↔ e→εEa(u) ↔ (zz̄)→ipa(u)

(ς̇1, ς̇2, φ̇1, φ̇2)↔ (ς1,ς2,φ1,φ2)
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h(u4ϑ, v) = 1/h(v, u)

h(v, u) =
u→ v

u→ v + i

1

s(u, v) ↽(u, v)
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• the dynamical part has zeros/poles at 
coinciding rapidities:



The hexagon as building block for correlation 
functions

≏∱

≏∲

≏∳

≏∴

≨≏∱≏∲≏∳≏∴≩ ∽

Figure 1: Hexagonalization of a four-point function: A planar four-point function can be
represented as a surface with four holes. The idea of hexagonalization is to cut it into
four hexagonal patches as depicted above. The contribution from each patch is given by a
hexagon form factor. It is conceptually di↵erent from the usual operator product expansion.
(The colors of the figure represent the two places where this work was done.)

limits of higher-point functions, one can study interesting physical phenomena1 which cannot
be explored just by looking at individual two- and three-point functions.

The situation is more interesting, and at the same time, more intricate in large N confor-
mal field theories such as planar N = 4 supersymmetric Yang-Mills theory (N = 4 SYM).
This is because the operator product expansion (OPE) and the large N limit are not quite
“compatible”: Basic observables in large N CFT’s are correlation functions of single-trace
operators. Even at large N , the OPE series of these correlators contains not only single-
trace operators but also multi-trace operators. Therefore one cannot compute higher-point
functions just by knowing two- and three-point functions of single-trace operators2.

This appears to be an inconvenient truth for integrability practitioners: Owing to the
remarkable progress in the last ten years, we now have powerful nonperturbative methods to
study the spectrum [5] (see [6] for the current state of the art), and the structure constants [7]
of planar N = 4 SYM. However these approaches are so far limited to single-trace operators.
The aforementioned fact seems to indicate that we must extend these methods to multi-trace
operators before studying higher-point functions.

This however is not the case: In this paper, we propose an alternative route to higher-
point functions, which does not necessitate explicit information on multi-trace operators.
The key idea is to decompose the correlation functions not to two- and three-point functions,
but to more fundamental building blocks called the hexagon form factors. The hexagon form
factors were introduced in [7] as the building blocks for the three-point function of single-
trace operators. They compute a “square-root” of the structure constant, which is associated
with a hexagonal patch of the string worldsheet. The purpose of this work is to show that

1Examples of such interesting physics discussed recently are the Regge limit [1], the emergence of the
bulk locality [2] and chaos [3].

2There are certain limits where contributions from multi-trace operators are suppressed. In such limits,
one can construct (approximate) higher-point functions from two- and three-point functions of single trace
operators. See [4] for more detailed discussions.

3

   [Fleury, Komatsu, 16; also Eden, Sfondrini, 16]
• four point function by hexagon decomposition: 

• sewing back hexagons implies insertion of an arbitrary number of virtual particles      
- in general the sum over virtual particles is not easy to perform, except in the case of 
the octagon, see below

• to delay dealing with these divergences one can start with the correlation functions of 
BPS operators

• when a leg is formed by sewing different hexagons, divergences appear [Basso, 
Gonçalves, Komatsu, Vieira, 17]                TBA structure 

• a systematic resummation of the divergent terms was not yet achieved, but the general 
structure was conjectured in [Basso, Georgoudis, Klemenchuk Sueiro, 22],  cf. Benjamin’s 
talk           

• the same technique can be used for any number of operator insertions: 
hexagon decomposition  triangulation of the sphere with n punctures⟷



Four point functions: the “simplest” correlation function

• four point function: dependence on two cross ratios: 

Figure 8: Weight factor and symmetry. In the second hexagon H2, the operators are posi-
tioned at 0, (z, z̄) and 1. To obtain this configuration starting from the “canonical one”,
one needs to perform the transformations, e�D log |z| and e

iL� as depicted in the figure. Note
that these transformations leave the points 0 and 1 invariant.

On the other hand, Ĥ2 is not canonical since the position and the polarization of O2 in this
frame are given in terms of the conformal and the R-symmetry cross ratios as

O2 : x2 = (0,Re(z), Im(z), 0) ,

Y2 = (2/|↵|)((1 + ↵↵̄)/2, i(1� ↵↵̄)/2, iIm(↵), iRe(↵), 0, 0) ,
(22)

where z and ↵ are defined in a standard way as follows:

zz̄ =
x
2
12x

2
34

x2
13x

2
24

, (1� z)(1� z̄) =
x
2
14x

2
23

x2
13x

2
24

, ↵↵̄ =
y
2
12y

2
34

y213y
2
24

, (1� ↵)(1� ↵̄) =
y
2
14y

2
23

y213y
2
24

. (23)

To obtain the configuration for Ĥ2 starting from the canonical configuration, we need to
perform the dilatation and the rotation (see figure 8),

e
�D log |z|

e
iL�

, (24)

where L and � are given by13

L =
1

2
(L1

1 � L
2
2 � L

1̇
1̇ + L

2̇
2̇) , e

i� =

r
z

z̄
. (25)

The same argument applies also to the R-symmetry part and the full transformation which
brings Ĥ to Ĥ2 is

g = e
�D log |z|

e
iL�

e
J log |↵|

e
iR✓ = e

�(D�J) log |z|
e
J(log |↵|�log |z|)

e
iL�

e
iR✓

, (26)

where J is the R-charge which rotates Z and Z̄ and R and ✓ are the R-symmetry analogue
of L and �:

R =
1

2
(R1

1 �R
2
2 �R

1̇
1̇ +R

2̇
2̇) , e

i✓ =

r
↵

↵̄
. (27)

Thus, the weight factor can be determined as

W = e
�2ip̃ log |z|

e
J 'e

iL �e
iR ✓ , (28)

13Here L
↵
� and L̇

↵̇
�̇ are Lorentz generators contained in psu(2|2)2.
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Bootstrapping the simplest correlator in planar N = 4 SYM at all loops
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We present the full form of a four-point correlation function of large BPS operators in planar
N = 4 Super Yang-Mills to any loop order. We do this by following a bootstrap philosophy based
on three simple axioms pertaining to (i) the space of functions arising at each loop order, (ii) the
behaviour in the OPE in a double-trace dominated channel and (iii) the behaviour under a double
null limit. We discuss how these bootstrap axioms are in turn strongly motivated by empirical
observations up to nine loops unveiled through integrability methods in our previous work [9] on
this simplest correlation function.

I. INTRODUCTION

Integrability methods have shaped a new path for the
explicit evaluation of correlators of local operators in pla-
nar N = 4 SYM [1–5] and also non-planar [6–8], specially
for four-point functions of large protected single-trace op-
erators. In [9] we used integrability-based methods to
find the loop corrections to the polarized four-point func-
tion we named as the simplest. This correlator consists
of four external protected operators with R-charge po-
larizations chosen as shown in figure 1. In the limit of
long operators1 (K � 1), we argued this four-point func-
tion admits a factorization into the tree level part which
carries all the dependence on the external scaling dimen-
sion K and the loop corrections which are given by the
squared of the function O (the octagon)

hO1O2O3O4i =


1

x2
12x

2
13x

2
24x

2
34

�K
2

⇥O
2(z, z̄) (1)

where the cross ratios are defined in terms of the space-
time positions as:

zz̄ = u =
x
2
12x

2
34

x2
13x

2
24

and (1�z)(1�z̄) = v =
x
2
14x

2
23

x2
13x

2
24

In this paper we present some of the analytic properties
of the octagon O which follow from the explicit nine-loop
results in [9]. These properties include a restriction on
the space of functions that appear at any loop order and
the remarkable simplicity of the octagon in two di↵erent
kinematical limits: the OPE limit (z ! 1, z̄ ! 1) and
the double light-cone limit (z ! 0, z̄ ! 1).

We also state that these three analytic properties can
be used to uniquely define the octagon and with that

1
The rank of the gauge group Nc ! 1 is the largest parameter

followed by K. Then the planar correlator is expanded in powers

of the ’t Hooft coupling g2.

O1(0) O2(z)

O3(1) O4(1)

•

•

•

P
 in

•

•

•

P
 out

FIG. 1. The simplest four-point function with external opera-

tors O1(0, 0) = Tr(Z
K
2 X̄

K
2 )+cyclic permutations, O2(z, z̄) =

Tr(XK ), O3(1, 1) = Tr(Z̄K) and O4(1,1) = Tr(Z
K
2 X̄

K
2 )+

cyclic permutations. The Wick contractions form a perime-
ter with four bridges of width K

2 . According to Hexagonal-
izaiton [3] in the limit K � 1 the loop corrections are ob-
tained by summing over 2D intermediate multiparticle states
 in and  out on mirror cuts 1-4 and 2-3 respectively, with
both sums evaluating to O. Alternatively the octagon O rep-
resents the resummation of planar Feynman diagrams draw
inside(outside) the perimeter.

also the simplest correlator (1). We show how to solve
this bootstrap problem by first introducing a Steinmann
basis of Ladders which resolve two of the aforementioned
analytic properties. Then using the third property to
completely fix the coe�cients in an Ansatz constructed
with the Steinmann basis.
This bootstrap approach reproduces the explicit re-

sults obtained from perturbation theory and integrabil-
ity and allows us to easily extend them to arbitrary loop
order. We accompany this letter with an ancillary file
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• for BPS operators with large R-charges and particular  
polarisations: factorisation into two octagons [Coronado, 18]

• analytical computation of the octagon by summing up the mirror particle contribution 
 Fredholm determinant [Kostov, Petkova, D.S., 19] ⟶

• analysis of the Fredholm determinant in various regimes + resurgent analysis 
[Belitsky, Korchemsky, 19-21; Bajnok, Boldis, Korchemsky, 24] 

K/2

K/2

Bootstrapping the simplest correlator in planar N = 4 SYM at all loops

Frank Coronado1,2,3

1
Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada

2
Department of Physics & Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada
3
ICTP South American Institute for Fundamental Research, São Paulo, SP Brazil 01440-070

We present the full form of a four-point correlation function of large BPS operators in planar
N = 4 Super Yang-Mills to any loop order. We do this by following a bootstrap philosophy based
on three simple axioms pertaining to (i) the space of functions arising at each loop order, (ii) the
behaviour in the OPE in a double-trace dominated channel and (iii) the behaviour under a double
null limit. We discuss how these bootstrap axioms are in turn strongly motivated by empirical
observations up to nine loops unveiled through integrability methods in our previous work [9] on
this simplest correlation function.

I. INTRODUCTION

Integrability methods have shaped a new path for the
explicit evaluation of correlators of local operators in pla-
nar N = 4 SYM [1–5] and also non-planar [6–8], specially
for four-point functions of large protected single-trace op-
erators. In [9] we used integrability-based methods to
find the loop corrections to the polarized four-point func-
tion we named as the simplest. This correlator consists
of four external protected operators with R-charge po-
larizations chosen as shown in figure 1. In the limit of
long operators1 (K � 1), we argued this four-point func-
tion admits a factorization into the tree level part which
carries all the dependence on the external scaling dimen-
sion K and the loop corrections which are given by the
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In this paper we present some of the analytic properties
of the octagon O which follow from the explicit nine-loop
results in [9]. These properties include a restriction on
the space of functions that appear at any loop order and
the remarkable simplicity of the octagon in two di↵erent
kinematical limits: the OPE limit (z ! 1, z̄ ! 1) and
the double light-cone limit (z ! 0, z̄ ! 1).

We also state that these three analytic properties can
be used to uniquely define the octagon and with that
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The rank of the gauge group Nc ! 1 is the largest parameter

followed by K. Then the planar correlator is expanded in powers

of the ’t Hooft coupling g2.

O1(0) O2(z)

O3(1) O4(1)

•

•

•

P
 in

•

•

•

P
 out

FIG. 1. The simplest four-point function with external opera-

tors O1(0, 0) = Tr(Z
K
2 X̄

K
2 )+cyclic permutations, O2(z, z̄) =

Tr(XK ), O3(1, 1) = Tr(Z̄K) and O4(1,1) = Tr(Z
K
2 X̄

K
2 )+

cyclic permutations. The Wick contractions form a perime-
ter with four bridges of width K

2 . According to Hexagonal-
izaiton [3] in the limit K � 1 the loop corrections are ob-
tained by summing over 2D intermediate multiparticle states
 in and  out on mirror cuts 1-4 and 2-3 respectively, with
both sums evaluating to O. Alternatively the octagon O rep-
resents the resummation of planar Feynman diagrams draw
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also the simplest correlator (1). We show how to solve
this bootstrap problem by first introducing a Steinmann
basis of Ladders which resolve two of the aforementioned
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completely fix the coe�cients in an Ansatz constructed
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2
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◆
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X
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g

g =

p
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`ij =
1
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(Li + Lj � Lk)

|�Ai
i i

↵ = ↵̄ = 1

K ! 1
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the sphere is cut into  
two disks (octagons)



Four point functions: the “simplest” correlator

simple kinematical factor 

- one-particle measure: 

and the two-particle symmetric hexagon form factor is:

Pab(u, v) = K++
ab (u, v)K+�

ab (u, v)K�+
ab (u, v)K��

ab (u, v) (B.9)

with:

K±±
ab (u, v) =

x
[±a](u)� x

[±b](v)

1� x[±a](u)x[±b](v)
(B.10)

To perform the weak coupling expansion of the integrand we need the expansion of the
Zhuckovsky variable:

x
[±a] =

u± i
2 a

g
� g

u± i
2 a

� g
3

(u± i
2 a)

3
� 2 g5

(u± i
2 a)

5
� 5 g7

(u± i
2 a)

7
+O(g)9 (B.11)

This exhibits poles whose degree increases with each loop order. Likewise the integrand
inherits these poles for each of the variables of integration. In particular we do not obtain
extra poles coupling two rapidities. Differences of rapidities comming from (B.9) only
appear on the numerator so they can be easily expanded out to.

In order to make more explicit the pole structure of the integrand we propose the
following change of variables:

✓
u� i

2
a

◆
! 1

A�
and

✓
u+

i

2
a

◆
! 1

A+
(B.12)

Similarly we use other letters for other pairs of rapidity-bound state number, for instance:
B for (v, b), C for (w, c), etc.

Under this new notation the expansion in (3.2) looks like:

x
[±a](u) =

1

gA±
� gA± � g

3A3
± � 2 g5A5

± � 5 g7A7
± + O(g)9 (B.13)

Plugging in this latter expansion for each rapidity in the components (B.6),(B.7),(B.8) and
(B.9) we find the mirror integrand takes the schematic form:

stripped integrand =
1X

m=0

�
g
2
�m mX

k=0

log(zz̄)k ⇥ Polynomial(A,B, C · · · ) (B.14)

where stripped integrand is the integrand after we have stripped out the blue factors in
(B.4),(B.6),(B.7) for each rapidity. The expansion on log(zz̄) comes from the loop expansion
of (B.8). The function Polynomial is a polynomial on the variables (B.12). Schematically
for the n = 3 integrand it has the form:

Polynomial(A,B, C) = coef ⇥Am1

� An1

+ Bm2

� Bn2

+ Cm3

� Cn3

+ + · · · (B.15)

where the dots represent analog terms with different coefficients and exponents (mk, nk).
Now to go from the integrand (B.14) to the integral we just need to perform a re-

placement. Whenever we see a couple A�1A1 in (B.15) we replace it by the basis in (B.2)
as:

stripped integrand
restore blue factors,

perform sums and integrals
=) In,l

Am1

� An1

+ Bm2

� Bn2

+ Cm3

� Cn3

+

restore blue factors,
perform sums and integrals

=) Im1,n1
Im2,n2

Im3,n3
(B.16)
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Determinant formula for the octagon form factor in N = 4 SYM
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We compute to all loop orders correlation function of four heavy BPS operators in N = 4 SYM
with special polarisations considered recently by Frank Coronado. Our main result is an expression
for the octagon form factor as determinant of a semi-infinite matrix. We find that at weak coupling
the entries of this matrix are linear combinations of ladder functions with simple rational coe�cients
and give the full perturbative expansion of the octagon.

I. INTRODUCTION

The discovery of integrability in the planar N = 4
SYM [1] initiated a ‘worldsheet’ approach powered by
the analytic tools developed for two-dimensional solv-
able models. In this approach a single-trace operator
is described as a state of a two-dimensional field theory
compactified on a circle. The state consists of a set of
physical excitations on the top of a ground state asso-
ciated to a half-BPS operator. By gauge-string duality,
this is also a closed string in the AdS5 ⇥ S

5 background.
The full spectrum of such operators has been obtained

for any value of the gauge coupling applying the integra-
bility techniques related to the Thermodynamic Bethe
Ansatz [2–4]. The computation of the OPE structure
constants needed a new theoretical input. It came with
the ‘hexagon proposal’ of Basso, Komatsu and Vieira [5].
The authors of [5] proposed to split the worldsheet of
a three-point function into two hexagonal patches, each
containing a curvature defect. The observables associ-
ated with the two hexagons are special form factors which
can be computed using the symmetries of the theory. The
prescription using a ‘hexagonalisation’ of the worldsheet
was then extended to the case of the four-point functions
[6–8] and to non-planar corrections [9, 10]. The hexagons
are glued back by inserting complete sets of virtual states
in the intermediate channels.

The contribution of virtual particles in the spectrum
of ‘heavy’ operators (i.e. with large dimensions) is sup-
pressed in the weak coupling limit. This is also the case
for the three-point functions of such operators. In the
strong coupling limit the virtual particles cannot be ne-
glected anymore, and in the cases amenable to analyti-
cal treatment their contribution is expressed in terms of
Fredholm determinants [11].

In the computation of the of four-point functions of
heavy operators by hexagonalisation, the virtual parti-
cles are not suppressed at weak coupling anymore [6]
and the evaluation of their contribution represents a chal-
lenge. Recently, Frank Coronado obtained some remark-
able results for the four-point functions of heavy half-BPS
operators with particular polarisations of the R-charges
[12, 13]. In that configuration, the four-point function
factorises into sum of products of the so called octagon

�

(0,0)

(�, �)

(z, z̄)(1,1) �1 �2

FIG. 1. A sketch of the octagon O`. The red
lines symbolise the mirror particles propagating
between the two hexagons, each one characterised
by a rapidity u and a bound state number a. Each
mirror particle has to pass across a ‘bridge’ com-
posed of ` physical particles.

form factors, or octagons. An octagon is obtained by glu-
ing together two hexagons by inserting a complete set of
virtual particles. The Boltzmann weights of the virtual
particles depend on the coordinates and the R-charge po-
larisations of the two hexagons, as well as on the length
` of the ‘bridge’ composed of tree-level propagators (the
vertical lines in Fig. 1).
The octagon was expressed in [12] as an infinite series

of non-singular contour integrals which can be evaluated
by residues. It is claimed that full perturbative expansion
of the octagon can be recast as a multilinear combination
of conveniently normalised ladder integrals f1, f2, ... [14],
see equation (27) for their definition,

O` = 1 +
1X

n=1

Xn

1X

J=n(n+`)

g
2J

⇥

X

j1+...jn=J

cj1,···jn fj1 · · · fjn ,

(1)

where the dependence on the polarisations is carried by
the factors

Xn = 1
2

�
(X+)n + (X�)n

�
(2)

and the coe�cients cj1...jn are rational numbers to be
determined. The conjectured form of the perturbative

more general setting: octagon  
with a bridge of length ℓ

and the two-particle symmetric hexagon form factor is:

Pab(u, v) = K++
ab (u, v)K+�

ab (u, v)K�+
ab (u, v)K��

ab (u, v) (B.9)

with:

K±±
ab (u, v) =

x
[±a](u)� x

[±b](v)

1� x[±a](u)x[±b](v)
(B.10)

To perform the weak coupling expansion of the integrand we need the expansion of the
Zhuckovsky variable:

x
[±a] =

u± i
2 a

g
� g

u± i
2 a

� g
3

(u± i
2 a)

3
� 2 g5

(u± i
2 a)

5
� 5 g7

(u± i
2 a)

7
+O(g)9 (B.11)

This exhibits poles whose degree increases with each loop order. Likewise the integrand
inherits these poles for each of the variables of integration. In particular we do not obtain
extra poles coupling two rapidities. Differences of rapidities comming from (B.9) only
appear on the numerator so they can be easily expanded out to.

In order to make more explicit the pole structure of the integrand we propose the
following change of variables:

✓
u� i

2
a

◆
! 1

A�
and

✓
u+

i

2
a

◆
! 1

A+
(B.12)

Similarly we use other letters for other pairs of rapidity-bound state number, for instance:
B for (v, b), C for (w, c), etc.

Under this new notation the expansion in (3.2) looks like:

x
[±a](u) =

1

gA±
� gA± � g

3A3
± � 2 g5A5

± � 5 g7A7
± + O(g)9 (B.13)

Plugging in this latter expansion for each rapidity in the components (B.6),(B.7),(B.8) and
(B.9) we find the mirror integrand takes the schematic form:

stripped integrand =
1X

m=0

�
g
2
�m mX

k=0

log(zz̄)k ⇥ Polynomial(A,B, C · · · ) (B.14)

where stripped integrand is the integrand after we have stripped out the blue factors in
(B.4),(B.6),(B.7) for each rapidity. The expansion on log(zz̄) comes from the loop expansion
of (B.8). The function Polynomial is a polynomial on the variables (B.12). Schematically
for the n = 3 integrand it has the form:

Polynomial(A,B, C) = coef ⇥Am1

� An1

+ Bm2

� Bn2

+ Cm3

� Cn3

+ + · · · (B.15)

where the dots represent analog terms with different coefficients and exponents (mk, nk).
Now to go from the integrand (B.14) to the integral we just need to perform a re-

placement. Whenever we see a couple A�1A1 in (B.15) we replace it by the basis in (B.2)
as:

stripped integrand
restore blue factors,

perform sums and integrals
=) In,l

Am1

� An1

+ Bm2

� Bn2

+ Cm3

� Cn3

+

restore blue factors,
perform sums and integrals

=) Im1,n1
Im2,n2

Im3,n3
(B.16)
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- two-particle interaction:   Pfaffian ⟶

T (ω)
a = STra ω

ω
a = 4asω , (156)

Imu > Imv > Imw

G(u, v) = ωa Sba(v, u) ωa
hab(u, v)

→ eip̃b(v)rω → e→ip̃a(u)rω + ei(p̃b(v)→p̃a(u))rω
ωa Sab(u, v) ωa

hba(v, u)
(157)

Ḡ(u, v) = ωa Sab(u, v) ωa
hba(v, u)

→ e→ip̃b(v)rω → eip̃a(u)rω + ei(p̃a(u)→p̃b(v))rω
ωa Sba(v, u) ωa

hab(u, v)
(158)

BL↑OO↓MSDAY

Oε(g, z, z̄,ε, ε̄) = 1 +
↑∑

n=1

Xn(z, z̄,ε, ε̄) In,ε(z, z̄) (159)

In,ε(z, z̄) =
1

n!

↑∑

a1=1

. . .
↑∑

an=1

∫
du1 . . .

∫
dun

n∏

j=1

µ̄aj(uj, ϑ, z, z̄)↔
∏

j<k

P̃aj ,ak(uj, uk)

µaj(uj, ϑ, z, z̄) =
1↗
zz̄

sin aϖ

sinϖ
↔ µa(u)↔ e→εEa(u) ↔ (zz̄)→ipa(u)
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Exact results for the octagon

parametrisation for the cross ratios:

NOT FOR DISTRIBUTION JHEP_023P_0919 v1

The momentum and the energy of the physical particles of type a are given by

pa(u) = �i(Da � D
�a) log x, Ea(u) = � ig

2

�
D
a � D

�a
�
(x� 1

x
) , (1.10)

where D = ei@u/2 is the shift operator, to be used repeatedly in the following,

D : f(u) ! f(u+ i/2). (1.11)

For some computations this operator representation of functions with shifted arguments
can be quite efficient. We will use sometimes the commonly accepted notations,

f(u± ia/2) = f [±a](u) = D
±af(u) = f(u)D

±a
. (1.12)

We are interested in summing over the particles in the mirror dynamics whose energy
and momentum are given by

p̃a(u) =
1
2g (D

a + D
�a) (x� 1

x), Ẽa(u) = (Da + D
�a) log x. (1.13)

We consider an octagon with four physical and four mirror edges with the corresponding
BMN vacuum at each physical edge, as shown schematically in figure 1. The octagon is
obtained by gluing the hexagons H1 and H2 along the common edge (0, 0)–(1,1) by
inserting a complete set of virtual states  with energies Ẽ . A state  contains an arbitrary
number of fundamental particles and their bound states transforming in the skew-symmetric
representations of psu(2|2)⇥psu(2|2). Symbolically

O` =
X

 

hH2| i e�Ẽ ` h |H1i. (1.14)

To write the explicit expression one should bring the two hexagon operators to the canonical
hexagon H. The dependence on the cross ratios in the coordinate and flavour spaces appears
through the similarity transformations H1 ! H and H2 ! H:

O`(z, z̄,↵, ↵̄) =
X

 

hH| ie�Ẽ ` e2ip̃ ⇠ eiL � eiR ✓ eiJ 'h |Hi. (1.15)

The parameters �, ⇠, ✓,' conjugated to L,p,R,J are related to the cross ratios in the
Minkowski and in the flavour spaces, eq. (1.6), as

z = e�⇠+i�, z̄ = e�⇠�i�,

↵ = e'�⇠+i✓, ↵̄ = e'�⇠�i✓.
(1.16)

An n-particle virtual state  is completely characterised by the rapidities and the
bound state numbers (uj , aj) of the individual particles (j = 1, ..., n). Taking into account
the explicit form of the hexagon form factors, one writes (1.15) as the following series of
multiple integrals,

O` =
1X

n=0

1

n!

X

a1,...,an�1

Z nY

j=1

duj
2⇡

(�1)aj µaj (uj , `, z, z̄) W
matrix
a1...an

nY

j<k

H̃aj ,ak(uj , uk) . (1.17)
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[Kostov, Petkova, D.S., 19] simplified by [Belitsky, Korchemsky, 19]

|{n}i =
NX

k=1

!nk  +

k |0i

|{n1, n2}i =
NX

k1<k2

Pn1,n2(!
k1 ,!k2)  +

k2
 +

k1
|0i

V (zi, zj) =
zizj

(zi � zj)2
= � 4

sin2 ⇡(i� j)/N

q 6= 1

ek = (f+

k + f+

k+1
)(fk + fk+1)

Hl =
[N ]q
N

NX

i<j

V(i� j) Sl
[i,j] , Hr =

[N ]q
N

NX

i<j

V(i� j) Sr
[i,j] , (138) qHSL

V(k) ⌘ 1

(q!k � q�1)(q!�k � q�1)
=

1

4 sin(⇡k/N + ⌘) sin(⇡k/N � ⌘)
, ! ⌘ e2⇡ i/N ,

(139) VqHS

[Hl,Hr] = [Hl,G] = [G,Hr] , (140)

G GN = 1

H =
1

2
(Hl +Hr) (141)

psu(2|2)L ⇥ psu(2|2)R

✓ ! ✓ +
i⇡

2

|�Ȧi
i i

(Koct

` )mn = �2
p

(2m+ `+ 1)(2n+ `+ 1)

Z 1

0

dt

t
�(t) J2m+`+1(2gt) J2n+`+1(2gt) ,

(142)

�(t) =
cos�� cosh ⇠

cos�� cosh
p

t2 + ⇠2

y = i(⇡ � �)
X

±
Det

�
1� �±K

oct

`

�
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(Koct
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t
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cos�� cosh ⇠
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This form of the psu(2|2) characters follows from the generating function

W±(t) =
1X

a=0

(�1)a�±
a eat =

(1� e±'+i✓et)(1� e⌥'�i✓ et)

(1� ei� et)(1� e�i� et)

= 1 +
�±

2(cosh t� cos�)
.

(1.25)

The final expression of the series expansion for the octagon takes a form resembling a
Coulomb gas of dipole charges

O`(g, z, z̄,↵, ↵̄) =
1

2

X

±

1X

n=0

X

a1,...,an�1

1

n!

Z nY

j=1

duj
2⇡

(�1)aj�±
aj µaj (uj)

Y

j<k

H̃aj ,ak(uj , uk).

= 1 +
1X

n=1

Xn(�,',↵) In,`(z, z̄)
(1.26)

with

Xn =
(�+)n + (��)n

2
e�n⇠ . (1.27)

The multiple contour integrals were evaluated by residues order by order up to n = 4 in [2].
The perturbative result for the octagon obtained in [2] matched the five loops results in [23]
obtained previously using the conformal symmetry, the hidden dual conformal symmetry
and analytic bootstrap conditions. As explained before, it allows to extend these results to
any loop order.

1.3 Summary of the results

1.3.1 The [octagon]2 as a determinant

Based on the representation of the series (1.26) as Fredholm pfaffian, explained in sec-
tion 2.1, we give an explicit formula for the octagon in terms of the square root of the
determinant,

O`(z, z̄,↵, ↵̄) = 1
2

P
±
p

Det [I� �± CK]. (1.28)

The matrices I,C and K are semi-infinite matrices of the type M = {Mm,n}1m,n=0. The
matrices I and C are standard,

Im,n = �m,n , Cnm = �n+1,m � �n,m+1, m, n � 0, (1.29)

while the matrix K depends on the gauge coupling g and the cross ratios in the coordinate
space through the angle � and the parameter ⇠ defined in (1.16). Its matrix elements Knm

are given for any coupling g by a non-singular integral of a product of two Bessel functions,

Kmn =
g

2i

Z 1

|⇠|
dt

⇣
i
q

t+⇠
t�⇠

⌘m�n
�
⇣
i
q

t+⇠
t�⇠

⌘n�m

cos�� cosh t
Jm+`(2g

p
t2 � ⇠2) Jn+`(2g

p
t2 � ⇠2),(1.30)
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• octagon (Bessel) kernel:

• the octagon kernel is a rather universal object showing up in other instances, e.g.

STra 1a ⇥ STra ⌧a = 0

eKaa(u, u) = �i STra⌦b{Sba(v
�, u�) ⌧a @uSab(u

�, v�)}|v!u; b!a , (146)

u, a

✏ ! 0

det(1�K`+1)p
det(1�K`) det(1�K`+2)

= 1�TrK`+1+
1

2
Tr (K` +K`+2)+ . . . ⌘ 1+B1+W1+ . . .

e�
eEa(u) =

1

x[+a]x[�a]

m,n � 0
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contains all the information about the specifics of the 
correlation function (cross ratios, coupling constant,…)

- circular Wilson loop [Beccaria et al, 23] & form factor transitions in  SYM  

- sphere partition function; two- and three-point functions in the quiver  SYM theory, 
obtained as a  orbifold from  SYM

𝒩 = 4

𝒩 = 2
ZK 𝒩 = 4

[Sever, Tumanov, Wilhelm, 21; Basso, Tumanov, 23]



=2 quiver SYM theory as a  orbifold of =4 SYM𝒩 ℤK 𝒩

• a version of  SYM where the sphere part is twisted by a  twist 

• the gauge group is   and all the fields are  matrices 

• same field content as  SYM, with definite action of the twist:

𝒩 = 4 ℤK

SU(Nc)
⊗K K Nc × K Nc

𝒩 = 4

• expected to be integrable as well (at least when the K gauge group components share 
the same coupling constant) [Beisert, Roiban, 05; Gadde, Rastelli, 10; Skrzypek, 23]

• results from  supersymmetric localisation   matrix model [Pestun 07]:  

      - sphere partition function [Beccaria, Korchemsky, Tseytlin, 22]  
       - two and three point functions of twisted BPS operators  
                                                                    [Beccaria et al., 20, Billo et al., 22, Korchemsky, Testa, 25] 

   

⟶

• (super) symmetry reduced from 

Aµ = ⌧ Aµ ⌧ , {Z, Z̄} = ⌧ {Z, Z̄} ⌧ , {X, Y, X̄, Ȳ } = �⌧ {X, Y, X̄, Ȳ } ⌧ . (143)

Uk(x) =
1p
2
TrZk(x) =

1p
2
Tr

�
ZL

0
+ ZL

1

�
,

Tk(x) =
1p
2
Tr ⌧Zk(x) =

1p
2
Tr

�
ZL

0
� ZL

1

�
,

Ūk(x) =
1p
2
Tr Z̄k(x) , T̄k(x) =

1p
2
Tr ⌧ Z̄k(x)

GTk
= Gk

det(1�Kk+2)

det(1�Kk)
(144)

K`+1 ⌘ Koct

`

�(t) =
et

(et � 1)2

r
1 +

1

2`
g@g lnGT`

=
det(1�K`+1)p

det(1�K`) det(1�K`+2)

CUk,T`,T̄p
=

p
k`pp
2N

r
1 +

1

2`
g@g lnGT`

r
1 +

1

2p
g@g lnGTp , (145)

CTk,T`,Ūp
=

p
k`pp
2N

r
1 +

1

2`
g@g lnGT`

r
1 +

1

2k
g@g lnGTk

.

psu(2, 2|4) ! su(2, 2|2)⇥ su(2)
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Ḡ(u,v,w)

e�ip̃(u)r`

e+ip̃(u)r`

O(u)

Ō(u)

O(u,v)
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x2ij x
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L1 L2 L3
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[Kachru, Silverstein; Gukov, 98]

T (ω)
a = STra ω

ω
a = 4asω , (156)

T (ω)
a = STra ε

ω
a = 4asω , (157)
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BL↑OO↓MSDAY

Oε(g, z, z̄,ϑ, ϑ̄) = 1 +
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n=1

Xn(z, z̄,ϑ, ϑ̄) In,ε(z, z̄) (160)

In,ε(z, z̄) =
1
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. . .
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∫
du1 . . .

∫
dun
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ω = (1, 1, 1, 1)L ↔ ωR = (1, 1, 1, 1)L ↔ (↼,↼→1, 1, 1)R
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• magnon symmetry twisted by [Bertle et al, 24]
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Correlation functions for the =2 theory from 
localisation

𝒩

• BPS (vacuum) sector

untwisted

• two-point functions from localisation [Beccaria et al., 20, Billo et al., 22] + perturbative 
computations by [Galvagno, Preti, 20]
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Aµ = ⌧ Aµ ⌧ , {Z, Z̄} = ⌧ {Z, Z̄} ⌧ , {X, Y, X̄, Ȳ } = �⌧ {X, Y, X̄, Ȳ } ⌧ . (143)
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with

Aµ = � Aµ � , {Z, Z̄} = � {Z, Z̄} � , � {X, Y, X̄, Ȳ } � = ! {X, Y, X̄, Ȳ } . (143)
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! = e2⇡i/K

Uk(x) =
1p
2
TrZk(x) =

1p
2
Tr

�
ZL

0
+ ZL

1

�
,

Tk(x) =
1p
2
Tr ⌧Zk(x) =

1p
2
Tr

�
ZL

0
� ZL

1

�
,
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=

p
k`pp
KN

C(↵1,↵2,↵3)

k,`,p

|x� z|2k|y � z|2` ,
(145)

hO(↵)
` (x) Ō(↵)
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twisted

twist



• three-point functions [Billo, Frau, Lerda, Pini, Vallarino, 22; Korchemsky, Testa, 25]

Correlation functions for the =2 theory from 
localisation

𝒩

2

where KL≠1 is a semi-infinite matrix with elements

(KL≠1)mn
(2m+L)(2n+L)

= ≠8
⁄ Œ

0

dt

t
‰g(t) J2m+L(t) J2n+L(t) ,

‰g(t) = e
t/2g

/(et/2g ≠ 1)2
. (6)

and s– = sin2
fi–/K is the character of the twist in the

fundamental representation of SU(2|2). The kernel de-
scribed above coincides with the octagon kernel for the
large-charge four-point functions in [27–30], with cross
ratios set to particular values ◊ = fi, › = „ = Ï = 0, or
z = z̄ = 1 and – = –̄ = ≠1, in the notations of [28, 30].
At weak coupling, they can be expanded as

C
(–)
L (g) = 1 + O(g2L) , C

(–)
L (0) = C

(–)
Œ (g) = 1 . (7)

Our main result, explained below, is to reproduce the
expression (5) from integrability.
Hexagon formalism for orbifold N = 2 SCFT. In
the integrability framework, the three-point function is
represented pictorially as a pair of pants, which is then
cut into two hexagonal tiles. The hexagon form factors
were determined exactly at finite coupling through in-
tegrability [21, 22, 33]. To glue the hexagons back to-
gether, one inserts complete sets of states on edges of the
hexagons (called bridges), as in Figure 1. The associ-
ated excitations, referred to as (virtual) magnons, prop-
agate from one hexagon to the other with an exponential
suppression factor that depends on their energy and the
length of the bridge.

We propose that this procedure can be extended to
the ZK orbifold theory by inserting powers of twists · on
bridges; see Figure 1.

Figure 1. Structure constant corresponding to (3). The num-
bers on the sides of the pants denote the bridge lengths. The
thick colored lines denote the twist insertions.

To see how it works, it is convenient to decompose (4)
as C

(–1,–2,–3)
k,¸,p = (bridge)◊(bridge-like)◊(wrapping)

where

(bridge) = det (1 ≠ s–1Kk) det (1 ≠ s–2K¸) ,

(bridge-like) = det (1 ≠ s–3Kp) ,
(8)

while (wrapping) denotes the remaining factors in (4),
c.f. (19). As we will see below, each of them comes from
di�erent configuratons of magnons, see Figure 2:

• Bridge contributions come from magnons on a sin-
gle bridge.

• Wrapping contributions come from contact terms
among magnons on two adjacent bridges.

• Bridge-like contributions come from contact terms
involving magnons on all the three bridges.

Below we sketch the computation of each contribution.
Bridge contribution. Bridge contributions come from
summing over all possible numbers of magnons on a sin-
gle bridge and integrating over their rapidities. Doing
this for the bridge of length L and twist – gives

B
(–)
L = 1 +

Œÿ

n=1

1
n!

nŸ

k=1

A Œÿ

ak=1

⁄ duk

2fi
e

≠LẼak
(uk)

B
Bn

(9)

with

Bn ©
nŸ

k=1

1
µak (uk) T

(–)
ak

2 Ÿ

i<j

Hai,aj (ui, uj) . (10)

The quantities above depend on the rapidities uk via the
Zhukovsky transform defined by x + 1/x = u/g. xk =
x(uk) has a quadratic branch cut from ≠2g to 2g, and
we denote x

[±a]
k = x(uk ± ia/2) for positive integers a.

Mirror kinematics, usually denoted by u
“ , corresponds

to the analytic continuation x
[+a](u“) = 1/x

[+a](u) and
x

[≠a](u“) = x
[≠a](u). The physical momentum pa(u) and

the mirror energy ÂEa(u) are given by

e
ipa = x

[+a]
/x

[≠a]
, e

ÂEa = x
[+a]

x
[≠a] (11)

while the measure µa(u) and the symmetric hexagon
weight Hab(u, v) in the mirror kinematics are given by

µa = 1
ig

Ÿ

‘=±

1
x[‘a] ≠ 1/x[‘a] Ha © Êa Ha , (12)

Hab(ui, uj) =
Ÿ

‘,”=±

x
[‘a]
i ≠ x

[”b]
j

x
[‘a]
i x

[”b]
j ≠ 1

, Ha = x
[+a] ≠ x

[≠a]

x[+a]x[≠a] ≠ 1
.

The factor T
(–)
a is the character of the twist of the

corresponding bridge, ·
–
a , in the a-th antisymmetric rep-

resentation of PSU(2|2)

T
(–)
a = STra ·

–
a = 4as– , (13)

where we define the super-trace with a minus sign for
bosonic states.

The partition function B
(–)
L takes the form of the so-

called octagon [21, 24]. The sum over the bound states,
labeled by a, can be explicitly performed, leading to the
the weight ‰g(t) in the Fourier representation

4s–‰g(t) =
ÿ

a>1
T

(–)
a e

ta/2g
, (14)

which allows (9) to be rewritten [27, 28, 30] in the form

B
(–)
L = det(1 ≠ s–KL) . (15)
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We propose an integrability approach for planar three-point functions at finite coupling in N = 2 su-
perconformal field theories obtained by ZK orbifolds of N = 4 super Yang-Mills (SYM). Generalizing
the hexagon formalism for N = 4 SYM, we reproduce the structure constants of Coulomb branch
operators, previously obtained by supersymmetric localization as exact functions of the ’t Hooft
coupling. Our analysis explains the common physical origin of Fredholm kernels in integrability and
localization, and hints at structures after the resummation in the hexagon formalism.

Introduction. The understanding of strongly-coupled
gauge theory has advanced significantly thanks to duali-
ties, holography and non-perturbative methods like inte-
grability, localization and bootstrap. The paradigmatic
theory in which this progress has been made is N = 4
supersymmetric Yang–Mills (SYM) in four dimensions;
the most symmetric and thus the most tractable.

Studying theories with less symmetries has proven use-
ful in testing the applicability of these methods and un-
covering more general structures. Notably, there exists
a broad class of N = 2 supersymmetric theories with
rich physical and mathematical structures (see e.g. [1–3]).
Among them, ZK-orbifiolds of N = 4 SYM [4, 5] are par-
ticularly interesting, as they have conformal invariance
and integrability [6–8] despite less supersymmetries. The
planar spectrum of this theory was studied extensively by
integrability [9–13], and more recently, correlation func-
tions of BPS operators (known as Coulomb-branch oper-
ators) were computed exactly using supersymmetric lo-
calization [14–20]. In the planar limit, results involv-
ing operators in the so-called twisted sector are given
by Fredholm determinants of integrable Bessel operators.
Surprisingly, similar expressions arise in the integrability
approach to various (non-BPS) observables of N = 4
SYM [21–23], such as large-charge four-point functions
[24–32]. There, the Fredholm determinant arises as the
partition function of magnon excitations on the world-
sheet. This raises the natural question of whether the lo-
calization results for N = 2 orbifolds can be reproduced
by integrability and whether they, too, can be interpreted
as the partition function.

In this Letter, we give an a�rmative answer to this
question, by generalizing the hexagon formalism for
three-point functions of N = 4 SYM [33] to account for
orbifolding. A key challenge in this approach is handling
the divergences from virtual magnons wrapping around
each operator, which require systematic regularization
[34, 35]. We propose a regularization using a genus-two
surface (cf. [36]) and verify that it reproduces localiza-
tion results up to three virtual magnons. More broadly,
N = 2 orbifolds are an ideal setup for developing com-
putational techniques of the hexagon formalism. In ad-
dition, our formalism can be applied to non-BPS observ-

ables in these theories, and our analysis lays the basis for
future studies.
Three-point functions from localization. We con-
sider the N = 2 quiver gauge theory at the ZK orb-
ifold point, where the K gauge couplings coincide. A
convenient way to describe the theory is to start with
SU(KN) N = 4 SYM and perform an orbifold projection
by “ = diag(1N , fl 1N . . . , fl

K≠1
1N ) with fl © e

2fii/K ,

“ (Aµ, Z) “
≠1 = (Aµ, Z) , “ (X, Y ) “

≠1 = fl (X, Y ) , (1)

where X, Y and Z are complex scalars and Aµ the gauge
potential. After the projection, single-trace operators
consist of an untwisted sector, taking the same form as
in N = 4 SYM, and K ≠ 1 twisted sectors, given by in-
sertions of powers of “ in the trace. For instance, the
untwisted and twisted BPS operators read

O(0)
¸ = 1Ô

K
Tr Z

¸(x) , O(–)
¸ (x) = 1Ô

K
Tr “

–
Z

¸(x) . (2)

In the spin-chain language [6, 9, 37], “ corresponds to in-
sertion of a group element · twisting the boundary condi-
tion. It acts on the flavor indices of the magnons over the
Z vacuum as 1L ◊ ·R = 1L ◊ (fl, fl

≠1
, 1, 1)R, see the Sup-

plemental Material for more details. The twist · breaks
the PSU(2|2)2 symmetry of the N = 4 SYM magnons
down to PSU(2|2) ◊ SU(2) ◊ SU(2).

The two- and three-point functions of BPS operators
were computed by localization in [14] and perturbatively
checked in [38]. The results for normalized three-point
functions are

ÈO(–1)
k (x) O(–2)

¸ (y) Ō(–3)
p (z)ÍÒ

ÈOkŌkÍÈO¸Ō¸ÍÈOpŌpÍ
=

Ô
k¸pÔ
KN

C
(–1,–2,–3)
k,¸,p

|x ≠ z|2k|y ≠ z|2¸
,

(3)

where p = k + ¸, –3 = –1 + –2 and g =


g
2
YMN/4fi.

The dynamical structure constants C
(–1,–2,–3)
k,¸,p (g) take a

factorized form [39]

C
(–1,–2,–3)
k,¸,p = C

(–1)
k C

(–2)
¸ C

(–3)
p , (4)

C
(–)
L = det(1 ≠ s–KL)

det(1 ≠ s–KL≠1) det(1 ≠ s–KL+1)
, (5)

CUk,T`,T̄p
=

p
k`pp
2N

r
1 +

1

2`
g@g lnGT`

r
1 +

1

2p
g@g lnGTp , (146)
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=

p
k`pp
2N

r
1 +

1

2`
g@g lnGT`

r
1 +

1

2k
g@g lnGTk

.
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` =

det(1� s↵K`)p
det(1� s↵K`�1) det(1� s↵K`+1)

(147)
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⌧ ! 1L ⇥ diag(1F ,�1B)R ⌘ 1L ⇥ ⌧R

V (zi, zj) =
zizj
zijzji

=
1

4 sin2 ⇡(i� j)/N

Hopen

XXZ
= �

N�1X

j=1

ej
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1
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✏
�(u� v)

H1

H2

1

✏
STra 1a ⇥ STra ⌧a = 0

K̃aa(u, u) = �i STra⌦b{Sba(v
�, u�) ⌧a @uSab(u

�, v�)}|v!u; b!a , (148)
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✏ ! 0

det(1�K`+1)p
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= 1�TrK`+1+
1
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1
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• the results look very close to the octagon expression. Can they be obtained from integrability?

Aµ = � Aµ � , {Z, Z̄} = � {Z, Z̄} � , � {X, Y, X̄, Ȳ } � = ! {X, Y, X̄, Ȳ } . (143)

! = e2⇡i/K
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1p
2
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2
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�
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0
+ ZL

1

�
,

Tk(x) =
1p
2
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2
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�
ZL

0
� ZL

1

�
,
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1p
2
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1p
2
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(144)

G(0)

` = `N `
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• if the twists are absent  the structure constant is trivial, the same as for BPS 
operators in N=4 SYM  

(αi = 0)

Aµ = � Aµ � , {Z, Z̄} = � {Z, Z̄} � , � {X, Y, X̄, Ȳ } � = ! {X, Y, X̄, Ȳ } . (143)
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normalised three point function:

with T = 0, 1 for the untwisted and twisted sector respectively. The level matching condition

is given by

e2⇡iT s0/2
7Y

j=1

KjY

k=1

uj,k + iVj/2

uj,k � iVj/2
= 1 , (2.2)

where for the "Beauty" Dynkin diagram s = (0|0, 0, 0,�1,+2,�1, 0), the first index being

s0, and Vj = �j,4. Moreover, the condition on the total twist, alluded to before, is given by

e2⇡iLs0/2
7Y

j=1

e2⇡iKjsj/2 = 1 or
7X

j=1

Kjsj = 0 mod 2 . (2.3)

3 Results for the correlation function of BPS operators from localisation
and the matrix model

In [? ] and previous references, two- and extremal three-point correlation function of BPS

operators are computed, using results from localisation. In the N = 4 SYM-compatible

notations we have

Uk(x) =
1
p
2
Tr Zk(x) , Tk(x) =

1
p
2
Tr ⌧Zk(x) , (3.1)

Ūk(x) =
1
p
2
Tr Z̄k(x) , T̄k(x) =

1
p
2
Tr ⌧ Z̄k(x)

The factor 1/
p
2 appears because of the doubling of the size of the matrix fields, e.g Z(x) =

diag(Z0(x), Z1(x)). Here we are using the complex fields Z and Z̄. The dimension of

both twisted and untwisted BPS operators is unchanged, �Uk = �Tk = k, however the

coefficient multiplying the space dependence can depend on the coupling constant. We use

the definitions

hUk(x)Ūk(y)i =
GUk

|x� y|2k
, hTk(x)T̄k(y)i =

GTk

|x� y|2k
, (3.2)

Among the extremal three point functions, the following combinations are non-zero
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|x� z|2k|y � z|2`
, (3.3)
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,

where p = k + `. Among the coefficients, those containing only the untwisted fields do not

depend on the coupling constant,

GUk = kNk
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=
k`p
p
2
Np�1
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– 2 –
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Correlation functions for the N=2 theory from 
integrability

[Ferrando, Komatsu, Lefundes, D.S., 25]

• hexagon decomposition with psu(2|2) twist insertions:

• different factors in the structure constant have different origins:

- the bridge contribution can be computed similarly to the octagon
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3

Figure 2. Magnon configurations responsible for di�erent contributions. Left: Bridge contribution. Contributions from
magnons on di�erent bridges factorize into a product of contributions from each bridge unless the rapidities of magnons
on di�erent bridges coincide. Middle: Wrapping contribution. When rapidities of magnons of two adjacent bridges
coincide, we will have contact terms leading to the wrapping contributions, denoted by thick black lines. Right: Bridge-like
contribution. When magnons living on three di�erent bridges have coinciding rapidities, new contact terms arise that lead
to the bridge-like contribution, denoted by the thick black curve.

labeled by a, can be explicitly performed, leading to the
the weight ‰g(t) in the Fourier representation

4s–‰g(t) =
ÿ

a>1
T

(–)
a e

ta/2g
, (14)

which allows (9) to be rewritten [? ? ? ] in the form

B
(–)
L = det(1 ≠ s–KL) . (15)

Note that s0 = 0, so that this contribution is trivial for
the bridge without twist.
Wrapping contribution. The hexagon form factors de-
velop poles when the rapidities of magnons in adja-
cent bridges coincide. This property, known as decou-

pling condition, corresponds physically to a “magnon-
antimagnon” pair – or wrapping magnon – decoupling
from the hexagon and going to infinity, i.e. approach-
ing the operator insertion points. The regularization of
these singularities using the genus-two surface, discussed
later in the text and in more detail in the Supplementary
Material, allows to collect contact terms into a partition
function of the wrapping magnons. For a given operator
that contains the twists – and — and has length L, we
find that the contribution of these contact terms is given
by W

(–+—)
L , with

1
W

(–)
L
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(16)

where

Wn © (≠i)n
ˆv STr

Ë
·

–
a Sab(u, v) ·

—
b Sab(u, v)

È ---
væu

,

(17)

and

·
–
a =

nŸ

k=1
·

–
ak

, Sab(u, v) =
nŸ

i=1

nŸ

j=1
Sai,bj (ui, vj) . (18)

Here Sab(u, v) denotes Beisert’s scattering matrix [? ?

? ] for mirror bound states. After taking the derivatives
with respect to v, the two groups of n rapidities u and
v are identified, and then the integrals over u are per-
formed. A similar structure arises for hexagons in the
fishnet theory [? ]. Importantly, the result only depends
on the product of the twists and sum of the lengths of
each bridge. Moreover, for untwisted operators, this con-
tribution is absent.

Although we did not manage to evaluate (17) explicitly
for arbitrary n, we conjecture that the result matches

1
W

(–)
L

22
= 1

det(1 ≠ s–KL≠1) det(1 ≠ s–KL+1) . (19)

We verified this up to three virtual magnons, see the
discussions around (24) for more details.
Bridge-like contribution. The most nontrivial contribu-
tion is the bridge-like contribution, coming from con-
tact terms in which the rapidities of magnons on three
di�erent bridges coincide. They can be also computed
using the genus-two regularization. Our analysis, ex-
plained in Supplemental Material, shows that the three
magnons e�ectively merge, creating an excitation resem-
bling the usual bridge magnons, with the twist given by
·

–1·
–2 = ·

–3 and an e�ective bridge length ¸ + k = p.
The computation of the first few terms in their expansion
and general arguments suggest

B
(–3)
p = det(1 ≠ s–3Kp) . (20)

Final result. As we explain in the Supplemental Mate-
rial, these contributions factorize, leading to an expres-
sion that is simply a product of all the terms. The final
answer matches the localization result (4), and this is
our main result. In the rest of this paper, we give more
technical details.
Regularization on the genus-two surface. As men-
tioned earlier, we need to address the singularities of the
integrand that arise when the rapidities of magnons on
di�erent bridges coincide. The importance of such sin-
gularities was highlighted in [? ], where the one-magnon

- the wrapping and bridge-like black rings represent contact terms and require special treatment

with T = 0, 1 for the untwisted and twisted sector respectively. The level matching condition

is given by

e2⇡iT s0/2
7Y

j=1

KjY

k=1

uj,k + iVj/2

uj,k � iVj/2
= 1 , (2.2)

where for the "Beauty" Dynkin diagram s = (0|0, 0, 0,�1,+2,�1, 0), the first index being

s0, and Vj = �j,4. Moreover, the condition on the total twist, alluded to before, is given by

e2⇡iLs0/2
7Y

j=1

e2⇡iKjsj/2 = 1 or
7X

j=1

Kjsj = 0 mod 2 . (2.3)

3 Results for the correlation function of BPS operators from localisation
and the matrix model

In [? ] and previous references, two- and extremal three-point correlation function of BPS

operators are computed, using results from localisation. In the N = 4 SYM-compatible

notations we have

Uk(x) =
1
p
2
Tr Zk(x) , Tk(x) =

1
p
2
Tr ⌧Zk(x) , (3.1)

Ūk(x) =
1
p
2
Tr Z̄k(x) , T̄k(x) =

1
p
2
Tr ⌧ Z̄k(x)

The factor 1/
p
2 appears because of the doubling of the size of the matrix fields, e.g Z(x) =

diag(Z0(x), Z1(x)). Here we are using the complex fields Z and Z̄. The dimension of

both twisted and untwisted BPS operators is unchanged, �Uk = �Tk = k, however the

coefficient multiplying the space dependence can depend on the coupling constant. We use

the definitions

hUk(x)Ūk(y)i =
GUk

|x� y|2k
, hTk(x)T̄k(y)i =

GTk

|x� y|2k
, (3.2)

Among the extremal three point functions, the following combinations are non-zero

hUk(x)U`(y)Ūp(z)i =
GUk,U`,Ūp

|x� z|2k|y � z|2`
, (3.3)

hUk(x)T`(y)T̄p(z)i =
GUk,T`,T̄p

|x� z|2k|y � z|2`
,

hTk(x)T`(y)Ūp(z)i =
GTk,T`,Ūp

|x� z|2k|y � z|2`
,

where p = k + `. Among the coefficients, those containing only the untwisted fields do not

depend on the coupling constant,

GUk = kNk
⌘ Gk , GUk,U`,Ūp

=
k`p
p
2
Np�1

⌘ Gk,`,p . (3.4)

– 2 –

CUk,T`,T̄p
=

p
k`pp
2N

r
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1

2`
g@g lnGT`

r
1 +

1

2p
g@g lnGTp , (146)
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1
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(147)
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k,`,p = (bridge)⇥ (wrapping)⇥ (bridge-like)

(bridge) = det (1� s↵1Kk) det (1� s↵2K`)

(bridge-like) = det (1� s↵3Kp)
(148)

↵3 = ↵1 + ↵2 mod K
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zizj
zijzji
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1
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XXZ
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ej
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1

✏
STra 1a ⇥ STra ⌧a = 0

K̃aa(u, u) = �i STra⌦b{Sba(v
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We propose an integrability approach for planar three-point functions at finite coupling in N = 2 su-
perconformal field theories obtained by ZK orbifolds of N = 4 super Yang-Mills (SYM). Generalizing
the hexagon formalism for N = 4 SYM, we reproduce the structure constants of Coulomb branch
operators, previously obtained by supersymmetric localization as exact functions of the ’t Hooft
coupling. Our analysis explains the common physical origin of Fredholm kernels in integrability and
localization, and hints at structures after the resummation in the hexagon formalism.

Introduction. The understanding of strongly-coupled
gauge theory has advanced significantly thanks to duali-
ties, holography and non-perturbative methods like inte-
grability, localization and bootstrap. The paradigmatic
theory in which this progress has been made is N = 4
supersymmetric Yang–Mills (SYM) in four dimensions;
the most symmetric and thus the most tractable.

Studying theories with less symmetries has proven use-
ful in testing the applicability of these methods and un-
covering more general structures. Notably, there exists
a broad class of N = 2 supersymmetric theories with
rich physical and mathematical structures (see e.g. [1–3]).
Among them, ZK-orbifiolds of N = 4 SYM [4, 5] are par-
ticularly interesting, as they have conformal invariance
and integrability [6–8] despite less supersymmetries. The
planar spectrum of this theory was studied extensively by
integrability [9–13], and more recently, correlation func-
tions of BPS operators (known as Coulomb-branch oper-
ators) were computed exactly using supersymmetric lo-
calization [14–20]. In the planar limit, results involv-
ing operators in the so-called twisted sector are given
by Fredholm determinants of integrable Bessel operators.
Surprisingly, similar expressions arise in the integrability
approach to various (non-BPS) observables of N = 4
SYM [21–23], such as large-charge four-point functions
[24–32]. There, the Fredholm determinant arises as the
partition function of magnon excitations on the world-
sheet. This raises the natural question of whether the lo-
calization results for N = 2 orbifolds can be reproduced
by integrability and whether they, too, can be interpreted
as the partition function.

In this Letter, we give an a�rmative answer to this
question, by generalizing the hexagon formalism for
three-point functions of N = 4 SYM [33] to account for
orbifolding. A key challenge in this approach is handling
the divergences from virtual magnons wrapping around
each operator, which require systematic regularization
[34, 35]. We propose a regularization using a genus-two
surface (cf. [36]) and verify that it reproduces localiza-
tion results up to three virtual magnons. More broadly,
N = 2 orbifolds are an ideal setup for developing com-
putational techniques of the hexagon formalism. In ad-
dition, our formalism can be applied to non-BPS observ-

ables in these theories, and our analysis lays the basis for
future studies.
Three-point functions from localization. We con-
sider the N = 2 quiver gauge theory at the ZK orb-
ifold point, where the K gauge couplings coincide. A
convenient way to describe the theory is to start with
SU(KN) N = 4 SYM and perform an orbifold projection
by “ = diag(1N , fl 1N . . . , fl

K≠1
1N ) with fl © e

2fii/K ,

“ (Aµ, Z) “
≠1 = (Aµ, Z) , “ (X, Y ) “

≠1 = fl (X, Y ) , (1)

where X, Y and Z are complex scalars and Aµ the gauge
potential. After the projection, single-trace operators
consist of an untwisted sector, taking the same form as
in N = 4 SYM, and K ≠ 1 twisted sectors, given by in-
sertions of powers of “ in the trace. For instance, the
untwisted and twisted BPS operators read

O(0)
¸ = 1Ô

K
Tr Z

¸(x) , O(–)
¸ (x) = 1Ô

K
Tr “

–
Z

¸(x) . (2)

In the spin-chain language [6, 9, 37], “ corresponds to in-
sertion of a group element · twisting the boundary condi-
tion. It acts on the flavor indices of the magnons over the
Z vacuum as 1L ◊ ·R = 1L ◊ (fl, fl

≠1
, 1, 1)R, see the Sup-

plemental Material for more details. The twist · breaks
the PSU(2|2)2 symmetry of the N = 4 SYM magnons
down to PSU(2|2) ◊ SU(2) ◊ SU(2).

The two- and three-point functions of BPS operators
were computed by localization in [14] and perturbatively
checked in [38]. The results for normalized three-point
functions are

ÈO(–1)
k (x) O(–2)

¸ (y) Ō(–3)
p (z)ÍÒ

ÈOkŌkÍÈO¸Ō¸ÍÈOpŌpÍ
=

Ô
k¸pÔ
KN

C
(–1,–2,–3)
k,¸,p

|x ≠ z|2k|y ≠ z|2¸
,

(3)

where p = k + ¸, –3 = –1 + –2 and g =


g
2
YMN/4fi.

The dynamical structure constants C
(–1,–2,–3)
k,¸,p (g) take a

factorized form [39]

C
(–1,–2,–3)
k,¸,p = C

(–1)
k C

(–2)
¸ C

(–3)
p , (4)

C
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L = det(1 ≠ s–KL)

det(1 ≠ s–KL≠1) det(1 ≠ s–KL+1)
, (5)
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!
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Figure 1. Structure constant corresponding to (3). The num-
bers on the sides of the pants denote the bridge lengths. The
thick colored lines denote the twist insertions.

with p = k + ¸, –3 = –1 + –2 and g =
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g
2
YMN/4fi. The

structure constants C
(–1,–2,–3)
k,¸,p (g) take a factorized form

[? ]

C
(–1,–2,–3)
k,¸,p = C

(–1)
k C

(–2)
¸ C

(–3)
p , (4)

C
(–)
L = det(1 ≠ s–KL)

det(1 ≠ s–KL≠1) det(1 ≠ s–KL+1)
, (5)

where KL≠1 is a semi-infinite matrix with elements
(KL≠1)mn

(2m+L)(2n+L)
= ≠8

⁄ Œ

0

dt

t
‰g(t) J2m+L(t) J2n+L(t) ,

‰g(t) = e
t/2g

/(et/2g ≠ 1)2
. (6)

and s– = sin2
fi–/K is the character of the twist in the

fundamental representation of SU(2|2). The kernel de-
scribed above coincides with the octagon kernel for the
large-charge four-point functions in [? ? ? ? ], with cross
ratios set to particular values ◊ = fi, › = „ = Ï = 0, or
z = z̄ = 1 and – = –̄ = ≠1, in the notations of [? ? ].
At weak coupling, they can be expanded as

C
(–)
L (g) = 1 + O(g2L) , C

(–)
L (0) = C

(–)
Œ (g) = 1 . (7)

Our main result, explained below, is to reproduce the
expression (5) from integrability.
Hexagon formalism for orbifold N = 2 SCFT. In
the integrability framework, the three-point function is
represented pictorially as a pair of pants, which is then
cut into two hexagonal tiles. The hexagon form factors
were determined exactly at finite coupling through in-
tegrability [? ? ? ]. To glue the hexagons back to-
gether, one inserts complete sets of states on edges of the
hexagons (called bridges), as in Figure 1. The associ-
ated excitations, referred to as (virtual) magnons, prop-
agate from one hexagon to the other with an exponential
suppression factor that depends on their energy and the
length of the bridge.

We propose that this procedure can be extended to
the ZK orbifold theory by inserting powers of twists · on
bridges; see Figure 1.

To see how it works, it is convenient to decompose (4)
as C

(–1,–2,–3)
k,¸,p = (bridge)◊(bridge-like)◊(wrapping)

where
(bridge) = det (1 ≠ s–1Kk) det (1 ≠ s–2K¸) ,

(bridge-like) = det (1 ≠ s–3Kp) ,
(8)

while (wrapping) denotes the remaining factors in (4),
c.f. (19). As we will see below, each of them comes from
di�erent configuratons of magnons, see Figure 2:

• Bridge contributions come from magnons on a sin-
gle bridge.

• Wrapping contributions come from contact terms
among magnons on two adjacent bridges.

• Bridge-like contributions come from contact terms
involving magnons on all the three bridges.

Below we sketch the computation of each contribution.
Bridge contribution. Bridge contributions come from
summing over all possible numbers of magnons on a sin-
gle bridge and integrating over their rapidities. Doing
this for the bridge of length L and twist – gives

B
(–)
L = 1 +

Œÿ

n=1

1
n!

nŸ

k=1

A Œÿ

ak=1

⁄ duk

2fi
e

≠LẼak
(uk)

B
Bn

(9)

with

Bn ©
nŸ

k=1

1
µak (uk) T

(–)
ak

2 Ÿ

i<j

Hai,aj (ui, uj) . (10)

The quantities above depend on the rapidities uk via the
Zhukovsky transform defined by x + 1/x = u/g. xk =
x(uk) has a quadratic branch cut from ≠2g to 2g, and
we denote x

[±a]
k = x(uk ± ia/2) for positive integers a.

Mirror kinematics, usually denoted by u
“ , corresponds

to the analytic continuation x
[+a](u“) = 1/x

[+a](u) and
x

[≠a](u“) = x
[≠a](u). The physical momentum pa(u) and

the mirror energy ÂEa(u) are given by

e
ipa = x

[+a]
/x

[≠a]
, e

ÂEa = x
[+a]

x
[≠a] (11)

while the measure µa(u) and the symmetric hexagon
weight Hab(u, v) in the mirror kinematics are given by

µa = 1
ig

Ÿ

‘=±

1
x[‘a] ≠ 1/x[‘a] Ha © Êa Ha , (12)
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x[+a]x[≠a] ≠ 1
.

The factor T
(–)
a is the character of the twist of the

corresponding bridge, ·
–
a , in the a-th antisymmetric rep-

resentation of PSU(2|2)

T
(–)
a = STra ·

–
a = 4as– , (13)

where we define the super-trace with a minus sign for
bosonic states.

The partition function B
(–)
L takes the form of the so-

called octagon [? ? ]. The sum over the bound states,
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Figure 1. Structure constant corresponding to (3). The num-
bers on the sides of the pants denote the bridge lengths. The
thick colored lines denote the twist insertions.
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e�`Ẽak(u)

!
Wn , (149)

Wn ⌘ STr
nY

k=1

�↵
ak
(�i @vk)

 
nY

i=1

nY

j=1

Sai,bj(ui, vj)

!
nY

k=1

 
nY

i=1

nY

j=1

Sai,bj(ui, vj)

!�����
v!u

. (150)

⇣
W (↵)

`

⌘�2

= det(1� s↵K`�1) det(1� s↵K`+1) . (151)

psu(2, 2|4) ! su(2, 2|2)⇥ su(2)

⌧ ! 1L ⇥ diag(1F ,�1B)R ⌘ 1L ⇥ ⌧R

V (zi, zj) =
zizj
zijzji

=
1

4 sin2 ⇡(i� j)/N

Hopen

XXZ
= �

N�1X

j=1

ej

psu(2|2)L ⇥ psu(2|2)R ! psu(2|2)L ⇥ [su(2)⇥ su(2)]R

1

(u� v � i✏)(u� v + i✏)
⇠ ⇡

✏
�(u� v)

H1

45

T (ω)
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ω
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T (ω)
a = STra ε

ω
a = 4asω , (157)

Imu > Imv > Imw

G(u, v) = ωa Sba(v, u) ωa
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ωa Sab(u, v) ωa

hba(v, u)
(158)
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• evaluate the wrapping and bridge-like from contact terms, when rapidities on different 
bridges coincide (a similar procedure suggested by [Basso, IGST21] and employed in [Basso,  
Georgoudis, Klemenchuk Sueiro, 22]):

- represent the square of the structure constant as a genus-two closed surface with twist insertions 
- cut the surface differently along mirror (dotted) lines

5

Figure 3. Gluing two three-point functions into a genus-two closed surface, then cutting the result on three mirror (dotted)
lines to get two di�erent pairs of pants. Each mirror cut reveals an arbitrary number of magnons (red, green and blue dots).
The lengths R¸, R0, Rk are supposed to be large so that the physical excitations are suppressed. The twist line is inserted
along the mirror seam of length R¸.

• Applying this method to regularize the three-point
functions to other theories obtained by twisting
N = 4 SYM, see related works [? ? ], and in
particular to theories in which the vacuum states
acquire anomalous dimensions. Such a framework
would help further the links between three-point
functions in the hexagon formalism and the Quan-
tum Spectral Curve approach [? ], along the lines
provided in [? ].

• Given the simplicity of the localization result, it is
worth exploring a more e�cient integrability frame-
work beyond the hexagon formalism. One possi-

bility is to directly bootstrap the decompactified
string vertex [? ? ? ].
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- these surfaces are further cut into hexagons, and magnons are distributed among hexagons
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Figure 4. Cutting open the two pairs of pants G(u, v, w) and Ḡ(u, v, w) into four hexagons on physical bridges of lengths r¸+k,
r¸ and rk respectively. Here, the sets of magnons u, v and w are represented by a single magnon, for simplicity.

Twists and ZK orbifolds

As discussed in the main text, the theory obtained by the ZK orbifolding of N = 4 SYM with gauge group SU(NK)
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≠1(X̄, Ȳ ) , (43)

while the covariant derivatives are left untouched and some fermions are twisted. These fields represent magnons on top
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us to implement the matrices “

– in the hexagon computation as insertions of powers ·
– of the twist · . We insert the

twists in the legs between chiral O(–)
L and anti-chiral Ō(–)

L operators as in Figure 1.

Regularization on the genus-two surface

In this section we outline the regularization procedure for the three-point function. As described in the main text,
we begin by gluing two pair of pants along three long legs of lengths rk, r¸ and rp associated to the operators O(–1)

k ,
O(–2)

¸ and Ō(–3)
p , respectively. Next, we compute the resulting genus-two surface by cutting it open into two pairs of

pants with mirror magnons, like in Figure 3. Now, the lengths R¸ = r¸ + rp, R0 = r¸ + rk, Rk = rk + rp serve as
regulators for the volume of the mirror channels. We have to sum over an arbitrary number of these magnons on each
cut. We recover the square of the three-point function in the limit rj æ Œ.

The object we compute can be written schematically as
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Figure 4. Cutting open the two pairs of pants G(u, v, w) and Ḡ(u, v, w) into four hexagons on physical bridges of lengths r¸+k,
r¸ and rk respectively. Here, the sets of magnons u, v and w are represented by a single magnon, for simplicity.
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Regulating the singularities in finite volume

with T = 0, 1 for the untwisted and twisted sector respectively. The level matching condition

is given by

e2⇡iT s0/2
7Y

j=1

KjY

k=1

uj,k + iVj/2

uj,k � iVj/2
= 1 , (2.2)

where for the "Beauty" Dynkin diagram s = (0|0, 0, 0,�1,+2,�1, 0), the first index being

s0, and Vj = �j,4. Moreover, the condition on the total twist, alluded to before, is given by

e2⇡iLs0/2
7Y

j=1

e2⇡iKjsj/2 = 1 or
7X

j=1

Kjsj = 0 mod 2 . (2.3)

3 Results for the correlation function of BPS operators from localisation
and the matrix model

In [? ] and previous references, two- and extremal three-point correlation function of BPS

operators are computed, using results from localisation. In the N = 4 SYM-compatible

notations we have

Uk(x) =
1
p
2
Tr Zk(x) , Tk(x) =

1
p
2
Tr ⌧Zk(x) , (3.1)

Ūk(x) =
1
p
2
Tr Z̄k(x) , T̄k(x) =

1
p
2
Tr ⌧ Z̄k(x)

The factor 1/
p
2 appears because of the doubling of the size of the matrix fields, e.g Z(x) =

diag(Z0(x), Z1(x)). Here we are using the complex fields Z and Z̄. The dimension of

both twisted and untwisted BPS operators is unchanged, �Uk = �Tk = k, however the

coefficient multiplying the space dependence can depend on the coupling constant. We use

the definitions

hUk(x)Ūk(y)i =
GUk

|x� y|2k
, hTk(x)T̄k(y)i =

GTk

|x� y|2k
, (3.2)

Among the extremal three point functions, the following combinations are non-zero

hUk(x)U`(y)Ūp(z)i =
GUk,U`,Ūp

|x� z|2k|y � z|2`
, (3.3)

hUk(x)T`(y)T̄p(z)i =
GUk,T`,T̄p

|x� z|2k|y � z|2`
,

hTk(x)T`(y)Ūp(z)i =
GTk,T`,Ūp

|x� z|2k|y � z|2`
,

where p = k + `. Among the coefficients, those containing only the untwisted fields do not

depend on the coupling constant,

GUk = kNk
⌘ Gk , GUk,U`,Ūp

=
k`p
p
2
Np�1

⌘ Gk,`,p . (3.4)

– 2 –



Regulating the singularities in finite volume: bridge

• transporting a magnon form one hexagon to the other with a phase factor  :e±ip̃(u) rℓ
10

Figure 5. Cutting mirror pants into hexagons along a physical bridge of length r¸ and transporting excitations from one hexagon
to another. An orientation is needed to define the transport factors for the magnons moving from a hexagon to the other. A
magnon with momentum p̃(u) gets a factor eip̃(u)r¸ when it crosses the bridge of length r¸ in the direction of the arrow, as in
right pair of pants, and e≠ip̃(u)r¸ when it moves against them, as for the left one.

• Bridge-like contributions. The decoupling singularities also give rise to a contribution that looks like a regular
bridge contribution with e�ective bridge length p. They come from contact terms where magnons excitations in
three di�erent channels coincide, and thus are contained in the configurations with the same number of magnons
in all three mirror edges, as in Figure 8. We have

Œÿ

n=0
C(n,n,n) ∏

1
B

(–3)
p

22
. (52)

a) Bridge

One-magnon bridge contribution. Let us start by considering the configuration with one single magnon u in the
mirror seam with length R¸ gluing the two mirror pair of pants in Figure 3. Using (45), this is equal to

C(1,0,0) = lim
r¸æŒ

Œÿ

a=1

⁄ du

2fi
µa(u)e≠¸ÂEa(u) STra

!
·

–2
u G(u) G(u)

"
(53)

with G(u) and G(u) represented in Figure 5. The transition factor e
≠ip̃a(u)r¸ appears when a magnon crosses from the

upper to the lower hexagon on the left pair of pants G(u), while e
ip̃a(u)r¸ appears when a magnon crosses from the

upper to the lower hexagon on the right pair of pants, G(u).

Plugging these building blocks in (53), we get

C(1,0,0) = lim
r¸æŒ

Œÿ

a=1

⁄ du

2fi
µa(u) e

≠¸ÂEa(u)
T

(–2)
a

1
1 ≠ e

≠ip̃a(u)r¸ ≠ e
ip̃a(u)r¸ + 1

2
= 2

Œÿ

a=1

⁄ du

2fi
e

≠¸ÂEa(u) B1 (54)

with T
(–)
a = STr ·

–
a = 4as–. When r is large, the two middle terms in (54) oscillate rapidly and their contributions

are thus suppressed when integrated. Notice that we get twice the one-magnon bridge contribution, as expected since
we are computing the square of the structure constant.

Multi-magnon bridge contributions. This argument extends almost straightforwardly to C(n,0,0), with n excitations
on one seam and none on the other two.

C(n,0,0) = lim
ræŒ

1
n!

⁄
du µ(u) e

≠¸ÂE(u)
ÿ

–fi–̄=u
—fi—̄=u

(≠1)|–̄|+|—̄|
e

≠i(p̃(–̄)≠p̃(—̄))r¸ h<(–)h<(–̄) h>(—)h>(—̄) · · · , (55)

where

h<(—) =
Ÿ

uj ,ukœ—
j<k

haj ,ak (uj , uk) , h>(—) =
Ÿ

uj ,ukœ—
j>k

haj ,ak (uj , uk) , H(—) = h<(—) h>(—) ,
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Figure 5. Cutting mirror pants into hexagons along a physical bridge of length r¸ and transporting excitations from one hexagon
to another. An orientation is needed to define the transport factors for the magnons moving from a hexagon to the other. A
magnon with momentum p̃(u) gets a factor eip̃(u)r¸ when it crosses the bridge of length r¸ in the direction of the arrow, as in
right pair of pants, and e≠ip̃(u)r¸ when it moves against them, as for the left one.

• Bridge-like contributions. The decoupling singularities also give rise to a contribution that looks like a regular
bridge contribution with e�ective bridge length p. They come from contact terms where magnons excitations in
three di�erent channels coincide, and thus are contained in the configurations with the same number of magnons
in all three mirror edges, as in Figure 8. We have
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a) Bridge

One-magnon bridge contribution. Let us start by considering the configuration with one single magnon u in the
mirror seam with length R¸ gluing the two mirror pair of pants in Figure 3. Using (45), this is equal to

C(1,0,0) = lim
r¸æŒ

Œÿ

a=1

⁄ du

2fi
µa(u)e≠¸ÂEa(u) STra

!
·

–2
u G(u) G(u)

"
(53)

with G(u) and G(u) represented in Figure 5. The transition factor e
≠ip̃a(u)r¸ appears when a magnon crosses from the

upper to the lower hexagon on the left pair of pants G(u), while e
ip̃a(u)r¸ appears when a magnon crosses from the

upper to the lower hexagon on the right pair of pants, G(u).

Plugging these building blocks in (53), we get

C(1,0,0) = lim
r¸æŒ

Œÿ

a=1

⁄ du
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µa(u) e

≠¸ÂEa(u)
T

(–2)
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1
1 ≠ e

≠ip̃a(u)r¸ ≠ e
ip̃a(u)r¸ + 1

2
= 2

Œÿ

a=1

⁄ du

2fi
e

≠¸ÂEa(u) B1 (54)

with T
(–)
a = STr ·

–
a = 4as–. When r is large, the two middle terms in (54) oscillate rapidly and their contributions

are thus suppressed when integrated. Notice that we get twice the one-magnon bridge contribution, as expected since
we are computing the square of the structure constant.

Multi-magnon bridge contributions. This argument extends almost straightforwardly to C(n,0,0), with n excitations
on one seam and none on the other two.

C(n,0,0) = lim
ræŒ

1
n!

⁄
du µ(u) e

≠¸ÂE(u)
ÿ

–fi–̄=u
—fi—̄=u

(≠1)|–̄|+|—̄|
e

≠i(p̃(–̄)≠p̃(—̄))r¸ h<(–)h<(–̄) h>(—)h>(—̄) · · · , (55)

where

h<(—) =
Ÿ

uj ,ukœ—
j<k

haj ,ak (uj , uk) , h>(—) =
Ÿ

uj ,ukœ—
j>k

haj ,ak (uj , uk) , H(—) = h<(—) h>(—) ,

• taking the product of the two “mirror pants” gives the one-magnon bridge contribution

rapidly oscillating;  
vanish when integrated with rℓ → ∞
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Figure 6. Distribution of two magnons on opposite sides of the first pair of pants, according to (59).

and the dots stand for a super-trace of a product of S-matrices that contains no decoupling poles. In the limit r¸ æ Œ,
the only terms that survive are those where there are no exponential factors left. This corresponds to situations where
the left and right octagons are mirror images of one another, i.e. – = —. In those cases, the S-matrices simply cancel
and the super-trace trivially reduces to STr

rn
k=1 ·

–2
ak

=
rn

k=1 T
(–2)
ak . The sum then becomes

C(n,0,0) = 1
n!

nŸ

k=1

A Œÿ

ak=1

⁄ duk

2fi
µak (uk) e

≠¸ÂEak
(u)

T
(–2)
ak

B
ÿ

—fi—̄=u

H(—) H(—̄) (56)

= 1
n!

nŸ

k=1

A Œÿ

ak=1

⁄ duk

2fi
e

≠¸ÂEak
(u)

B
nÿ

m=0

3
n

m

4
Bm Bn≠m . (57)

We recognize the last line of the equation above as the n-th order term in the expansion of
1
B

(–2)
¸

22
. Therefore,

Œÿ

n=0
C(n,0,0) =

1
B

(–2)
¸

22
. (58)

The situation is obviously similar for the other bridges, and we obtain (49).

b) Wrapping

One-wrapping contribution. As was explained before, the decoupling poles are responsible for the wrapping contri-
butions. The simplest configurations for which they appear involve two magnons in di�erent mirror seams, such as
C(1,1,0) where one magnon is on the seam of length ¸ and the other that of length 0. In the following, we describe
how the regularization of these poles generates the wrapping contributions. According to our prescription, we begin
by cutting the pairs of pants G(u, v) and Ḡ(u, v) into hexagons, as shown in Figure 6,

G(u, v) = Ÿa Sba(v, u) Ÿa

hab(u, v) ≠ e
ip̃b(v)r¸ ≠ e

≠ip̃a(u)r¸ + e
i(p̃b(v)≠p̃a(u))r¸

Ÿa Sab(u, v) Ÿa

hba(v, u) , (59)

Ḡ(u, v) = Ÿa Sab(u, v) Ÿa

hba(v, u) ≠ e
≠ip̃b(v)r¸ ≠ e

ip̃a(u)r¸ + e
i(p̃a(u)≠p̃b(v))r¸

Ÿa Sba(v, u) Ÿa

hab(u, v) . (60)

The next step is to compute STrab ·a G(u, v) ·
0
b Ḡ(u, v). Taking the trace with the help of (36), we see that all

diagonal terms (the ones in which the exponential factors cancel) are equal to T
(–2)
a T

(0)
b = 0. For the other one-

wrapping contributions, corresponding to C(1,1,0) and C(0,1,1), we would get T
(–1)
a T

(0)
b = 0 and T

(–2)
a T

(–1)
b respectively.

Therefore, the diagonal terms do not give any contribution to C(1,1,0) and C(0,1,1), whereas for C(1,0,1), they contribute
to the B

2
¸ B

2
k part of (51).

For the remaining terms, we want to perform the integral over v by closing the integration contours in the upper
or lower half-plane. The choice of half-plane is dictated by the behavior of the factors e

±ip̃b(v)r¸ , with p̃b(v) ≥ 2v

at large v. Due to the presence of the decoupling poles, the integrals are only well defined if the u and v contours
do not intersect. Throughout this Supplemental Material, we choose to set Im u = +‘ for with small positive ‘ and

• sum over any number of magnons: square of the bridge contribution

3

Figure 2. Magnon configurations responsible for di�erent contributions. Left: Bridge contribution. Contributions from
magnons on di�erent bridges factorize into a product of contributions from each bridge unless the rapidities of magnons
on di�erent bridges coincide. Middle: Wrapping contribution. When rapidities of magnons of two adjacent bridges
coincide, we will have contact terms leading to the wrapping contributions, denoted by thick black lines. Right: Bridge-like
contribution. When magnons living on three di�erent bridges have coinciding rapidities, new contact terms arise that lead
to the bridge-like contribution, denoted by the thick black curve.

labeled by a, can be explicitly performed, leading to the
the weight ‰g(t) in the Fourier representation

4s–‰g(t) =
ÿ

a>1
T

(–)
a e

ta/2g
, (14)

which allows (9) to be rewritten [? ? ? ] in the form

B
(–)
L = det(1 ≠ s–KL) . (15)

Note that s0 = 0, so that this contribution is trivial for
the bridge without twist.
Wrapping contribution. The hexagon form factors de-
velop poles when the rapidities of magnons in adja-
cent bridges coincide. This property, known as decou-

pling condition, corresponds physically to a “magnon-
antimagnon” pair – or wrapping magnon – decoupling
from the hexagon and going to infinity, i.e. approach-
ing the operator insertion points. The regularization of
these singularities using the genus-two surface, discussed
later in the text and in more detail in the Supplementary
Material, allows to collect contact terms into a partition
function of the wrapping magnons. For a given operator
that contains the twists – and — and has length L, we
find that the contribution of these contact terms is given
by W

(–+—)
L , with

1
W

(–)
L

22
= 1 +

Œÿ

n=1

1
n!

nŸ

k=1

A Œÿ

ak=1

⁄ duk

2fi
e

≠LẼak
(u)

B
Wn ,

(16)

where

Wn © (≠i)n
ˆv STr

Ë
·

–
a Sab(u, v) ·

—
b Sab(u, v)

È ---
væu

,

(17)

and

·
–
a =

nŸ

k=1
·

–
ak

, Sab(u, v) =
nŸ

i=1

nŸ

j=1
Sai,bj (ui, vj) . (18)

Here Sab(u, v) denotes Beisert’s scattering matrix [? ?

? ] for mirror bound states. After taking the derivatives
with respect to v, the two groups of n rapidities u and
v are identified, and then the integrals over u are per-
formed. A similar structure arises for hexagons in the
fishnet theory [? ]. Importantly, the result only depends
on the product of the twists and sum of the lengths of
each bridge. Moreover, for untwisted operators, this con-
tribution is absent.

Although we did not manage to evaluate (17) explicitly
for arbitrary n, we conjecture that the result matches

1
W

(–)
L

22
= 1

det(1 ≠ s–KL≠1) det(1 ≠ s–KL+1) . (19)

We verified this up to three virtual magnons, see the
discussions around (24) for more details.
Bridge-like contribution. The most nontrivial contribu-
tion is the bridge-like contribution, coming from con-
tact terms in which the rapidities of magnons on three
di�erent bridges coincide. They can be also computed
using the genus-two regularization. Our analysis, ex-
plained in Supplemental Material, shows that the three
magnons e�ectively merge, creating an excitation resem-
bling the usual bridge magnons, with the twist given by
·

–1·
–2 = ·

–3 and an e�ective bridge length ¸ + k = p.
The computation of the first few terms in their expansion
and general arguments suggest

B
(–3)
p = det(1 ≠ s–3Kp) . (20)

Final result. As we explain in the Supplemental Mate-
rial, these contributions factorize, leading to an expres-
sion that is simply a product of all the terms. The final
answer matches the localization result (4), and this is
our main result. In the rest of this paper, we give more
technical details.
Regularization on the genus-two surface. As men-
tioned earlier, we need to address the singularities of the
integrand that arise when the rapidities of magnons on
di�erent bridges coincide. The importance of such sin-
gularities was highlighted in [? ], where the one-magnon

T (ω)
a = STra ω

ω
a = 4asω , (156)

T (ω)
a = STra ε

ω
a = 4asω , (157)

Imu > Imv > Imw

G(u, v) = ωa Sba(v, u) ωa
hab(u, v)

→ eip̃b(v)rω → e→ip̃a(u)rω + ei(p̃b(v)→p̃a(u))rω
ωa Sab(u, v) ωa

hba(v, u)
(158)

Ḡ(u, v) = ωa Sab(u, v) ωa
hba(v, u)

→ e→ip̃b(v)rω → eip̃a(u)rω + ei(p̃a(u)→p̃b(v))rω
ωa Sba(v, u) ωa

hab(u, v)
(159)

BL↑OO↓MSDAY

Oε(g, z, z̄,ϑ, ϑ̄) = 1 +
↑∑

n=1

Xn(z, z̄,ϑ, ϑ̄) In,ε(z, z̄) (160)

In,ε(z, z̄) =
1

n!

↑∑

a1=1

. . .
↑∑

an=1

∫
du1 . . .

∫
dun

n∏

j=1

µ̄aj(uj, ϖ, z, z̄)↔
∏

j<k

Paj ,ak(uj, uk)

µaj(uj, ϖ, z, z̄) =
1↗
zz̄

sin aϱ

sinϱ
↔ µa(u)↔ e→εEa(u) ↔ (zz̄)→ipa(u)

References

48

# ∙ ∙ ∙



• start with two magnons on two different bridges, e.g.

Regulating the singularities in finite volume: wrapping
11

Figure 6. Distribution of two magnons on opposite sides of the first pair of pants, according to (59).

and the dots stand for a super-trace of a product of S-matrices that contains no decoupling poles. In the limit r¸ æ Œ,
the only terms that survive are those where there are no exponential factors left. This corresponds to situations where
the left and right octagons are mirror images of one another, i.e. – = —. In those cases, the S-matrices simply cancel
and the super-trace trivially reduces to STr

rn
k=1 ·

–2
ak

=
rn

k=1 T
(–2)
ak . The sum then becomes

C(n,0,0) = 1
n!

nŸ

k=1

A Œÿ

ak=1

⁄ duk

2fi
µak (uk) e

≠¸ÂEak
(u)

T
(–2)
ak

B
ÿ

—fi—̄=u

H(—) H(—̄) (56)

= 1
n!

nŸ

k=1

A Œÿ

ak=1

⁄ duk

2fi
e

≠¸ÂEak
(u)

B
nÿ

m=0

3
n

m

4
Bm Bn≠m . (57)

We recognize the last line of the equation above as the n-th order term in the expansion of
1
B

(–2)
¸

22
. Therefore,

Œÿ

n=0
C(n,0,0) =

1
B

(–2)
¸

22
. (58)

The situation is obviously similar for the other bridges, and we obtain (49).

b) Wrapping

One-wrapping contribution. As was explained before, the decoupling poles are responsible for the wrapping contri-
butions. The simplest configurations for which they appear involve two magnons in di�erent mirror seams, such as
C(1,1,0) where one magnon is on the seam of length ¸ and the other that of length 0. In the following, we describe
how the regularization of these poles generates the wrapping contributions. According to our prescription, we begin
by cutting the pairs of pants G(u, v) and Ḡ(u, v) into hexagons, as shown in Figure 6,

G(u, v) = Ÿa Sba(v, u) Ÿa

hab(u, v) ≠ e
ip̃b(v)r¸ ≠ e

≠ip̃a(u)r¸ + e
i(p̃b(v)≠p̃a(u))r¸

Ÿa Sab(u, v) Ÿa

hba(v, u) , (59)

Ḡ(u, v) = Ÿa Sab(u, v) Ÿa

hba(v, u) ≠ e
≠ip̃b(v)r¸ ≠ e

ip̃a(u)r¸ + e
i(p̃a(u)≠p̃b(v))r¸

Ÿa Sba(v, u) Ÿa

hab(u, v) . (60)

The next step is to compute STrab ·a G(u, v) ·
0
b Ḡ(u, v). Taking the trace with the help of (36), we see that all

diagonal terms (the ones in which the exponential factors cancel) are equal to T
(–2)
a T

(0)
b = 0. For the other one-

wrapping contributions, corresponding to C(1,1,0) and C(0,1,1), we would get T
(–1)
a T

(0)
b = 0 and T

(–2)
a T

(–1)
b respectively.

Therefore, the diagonal terms do not give any contribution to C(1,1,0) and C(0,1,1), whereas for C(1,0,1), they contribute
to the B

2
¸ B

2
k part of (51).

For the remaining terms, we want to perform the integral over v by closing the integration contours in the upper
or lower half-plane. The choice of half-plane is dictated by the behavior of the factors e

±ip̃b(v)r¸ , with p̃b(v) ≥ 2v

at large v. Due to the presence of the decoupling poles, the integrals are only well defined if the u and v contours
do not intersect. Throughout this Supplemental Material, we choose to set Im u = +‘ for with small positive ‘ and
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Im v = 0, as well as Im w = ≠‘ for magnons on the third mirror edge, see below. We stress that the final results do
not depend on the ordering we choose for the contours, provided we keep the same for all the computations. When
computing the integrals over v by residues the main contribution will be from the decoupling pole at (v, b) = (u, a).
These contributions are what we call contact terms. The integrand might contain other poles in the complex plane
at positions v = vú but their contribution will be weighted by e

≠|Im p̃b(vú)|r¸ , and will be suppressed when r¸ æ Œ.
It becomes clear then that the only surviving contact term will be

C(1,1,0) = lim
r¸æŒ

Œÿ

a,b=1

⁄ du dv

(2fi)2 µa(u) µb(v) e
≠¸ÂEa(u)+i(p̃b(v)≠p̃a(u))r¸

STrab ·
–2
a Sab(u, v) ·

0
b Sab(u, v)

h
2
ba(v, u)

=
Œÿ

a=1

⁄ du

2fi
e

≠¸ÂEa(u) !
≠iˆv STrab ·

–2
a Sab(u, v) ·

0
b Sab(u, v)

" ---
væu

. (61)

For the last equality, we have used (30) and the fact that the terms where the v derivative acts outside the super-trace
are zero, since STrab ·

–2
a Sab(u, v) ·

0
b Sab(u, v)|væu = STrab ·

–2+0
a 1b = 0. This explains in particular why there are no

volume-dependent corrections in the wrapping terms, which would come from the derivative acting on the exponential
factor depending on r’s. All the discussion above can be adapted for the other pairings as well.

Multi-wrapping contributions. It is clear from the discussion above that the configurations with magnons on two
out of the three seams contain many terms, and we claim that they resum to (51). However, in order to isolate
the wrapping contributions, without any bridge contributions, it is enough to consider configurations with the same
number n of magnons on two seams. The wrapping contributions then come from the unique term in which we must
perform n of the 2n integrals, thus identifying the two sets of n rapidities (see Figure 7c)). Namely, for C(n,n,0),

C(n,n,0) ∏ lim
r¸æŒ

1
(n!)2

⁄
du dv µ(u) µ(v) e

≠¸ÂE(u)+i(p̃(v)≠p̃(u))r¸
H(u)H(v)
h

2
ba(v, u) STr

nŸ

k=1
·ak

Q

a
nŸ

i,j=1
Sai,bj (ui, vj)

R

b
2

, (62)

where we have used the Yang–Baxter equation and unitarity to simplify the matrix part. Using the property (30) we
can perform the integration in the vk’s by closing the integration contours in the upper half-plane and picking the
residues at some decoupling poles. We point out that two rapidities vi and vk cannot decouple to the same rapidity
uj . This happens because of presence of the factor H(v) in the numerator and because the trace vanishes when two
(bi, vi) and (bk, vk) are equal to the same (aj , uj). There are thus n! ways of identifying the uj = vk and all of them
are equivalent because the integrand is completely symmetric in the uj ’s and, separately, in the vk’s. The final result
is

C(n,n,0) ∏ 1
n!

nŸ

k=1

A Œÿ

ak=1

⁄ duk

2fi
e

≠¸ÂEak
(uk)

B
Wn =∆

Œÿ

n=0
C(n,n,0) ∏

1
W

(–2)
¸

22
, (63)

where

Wn © STr
nŸ

k=1
·

–
ak

(≠i ˆvk )

Q

a
nŸ

i=1

nŸ

j=1
Sai,bj (ui, vj)

R

b
nŸ

k=1
·

0
bk

Q

a
nŸ

i=1

nŸ

j=1
Sai,bj (ui, vj)

R

b
-----

væu
. (64)

Clearly, a similar computation applies to C(n,0,n) and C(0,n,n).
The rest of this subsection is devoted to discussing some of the other terms that appear when n = 2. We focus

on those shown in Figures 7a) and 7b) for the case of C(2,2,0). In the first case, where we all the magnons are in the
upper hexagons, the contribution from the form factors and twists is

Hu1u2Hv1v2r2
j,k=1 Hujvk

STr [·–2
u1 ·

–2
u2 (Su1u2 Sv1u2 Sv2u2 Sv1u1 Sv2u1 Sv2v1) ·

0
v1 ·

0
v2 (Sv1v2 Su1v2 Su1v1 Su2v2 Su2v1 Su2u1)] . (65)

Using unitarity and crossed unitarity (35), this simply reduces to
1

Ha1a2(u1, u2) T
(–2)
a1 T

(–2)
a2

2 1
Hb1b2(v1, v2) T

(0)
a1 T

(0)
a2

2
= 0 . (66)

The analogous contribution to C(0,2,2) vanishes as well, whereas the one for C(2,0,2) gives part of the expansion of
B

2
¸ B

2
k, exactly as in the n = 1 case treated above. In the situation of Figure 7b), we have

hu2u1hv1v2

Hu1v1h2
v2u2hv1u2hv2u1

STr [·–2
u1 ·

–2
u2 (Sv1u1 Su2v2) ·

0
v1 ·

0
v2 (Sv1v2 Su1v2 Su1v1 Su2v2 Su2v1 Su2u1)] . (67)

12

Im v = 0, as well as Im w = ≠‘ for magnons on the third mirror edge, see below. We stress that the final results do
not depend on the ordering we choose for the contours, provided we keep the same for all the computations. When
computing the integrals over v by residues the main contribution will be from the decoupling pole at (v, b) = (u, a).
These contributions are what we call contact terms. The integrand might contain other poles in the complex plane
at positions v = vú but their contribution will be weighted by e

≠|Im p̃b(vú)|r¸ , and will be suppressed when r¸ æ Œ.
It becomes clear then that the only surviving contact term will be

C(1,1,0) = lim
r¸æŒ

Œÿ

a,b=1

⁄ du dv

(2fi)2 µa(u) µb(v) e
≠¸ÂEa(u)+i(p̃b(v)≠p̃a(u))r¸

STrab ·
–2
a Sab(u, v) ·

0
b Sab(u, v)

h
2
ba(v, u)

=
Œÿ

a=1

⁄ du

2fi
e

≠¸ÂEa(u) !
≠iˆv STrab ·

–2
a Sab(u, v) ·

0
b Sab(u, v)

" ---
væu

. (61)

For the last equality, we have used (30) and the fact that the terms where the v derivative acts outside the super-trace
are zero, since STrab ·

–2
a Sab(u, v) ·

0
b Sab(u, v)|væu = STrab ·

–2+0
a 1b = 0. This explains in particular why there are no

volume-dependent corrections in the wrapping terms, which would come from the derivative acting on the exponential
factor depending on r’s. All the discussion above can be adapted for the other pairings as well.

Multi-wrapping contributions. It is clear from the discussion above that the configurations with magnons on two
out of the three seams contain many terms, and we claim that they resum to (51). However, in order to isolate
the wrapping contributions, without any bridge contributions, it is enough to consider configurations with the same
number n of magnons on two seams. The wrapping contributions then come from the unique term in which we must
perform n of the 2n integrals, thus identifying the two sets of n rapidities (see Figure 7c)). Namely, for C(n,n,0),

C(n,n,0) ∏ lim
r¸æŒ

1
(n!)2

⁄
du dv µ(u) µ(v) e

≠¸ÂE(u)+i(p̃(v)≠p̃(u))r¸
H(u)H(v)
h

2
ba(v, u) STr

nŸ

k=1
·ak

Q

a
nŸ

i,j=1
Sai,bj (ui, vj)

R

b
2

, (62)

where we have used the Yang–Baxter equation and unitarity to simplify the matrix part. Using the property (30) we
can perform the integration in the vk’s by closing the integration contours in the upper half-plane and picking the
residues at some decoupling poles. We point out that two rapidities vi and vk cannot decouple to the same rapidity
uj . This happens because of presence of the factor H(v) in the numerator and because the trace vanishes when two
(bi, vi) and (bk, vk) are equal to the same (aj , uj). There are thus n! ways of identifying the uj = vk and all of them
are equivalent because the integrand is completely symmetric in the uj ’s and, separately, in the vk’s. The final result
is

C(n,n,0) ∏ 1
n!

nŸ

k=1

A Œÿ

ak=1

⁄ duk

2fi
e

≠¸ÂEak
(uk)

B
Wn =∆

Œÿ

n=0
C(n,n,0) ∏

1
W

(–2)
¸

22
, (63)

where

Wn © STr
nŸ

k=1
·

–
ak

(≠i ˆvk )

Q

a
nŸ

i=1

nŸ

j=1
Sai,bj (ui, vj)

R

b
nŸ

k=1
·

0
bk

Q

a
nŸ

i=1

nŸ

j=1
Sai,bj (ui, vj)

R

b
-----

væu
. (64)

Clearly, a similar computation applies to C(n,0,n) and C(0,n,n).
The rest of this subsection is devoted to discussing some of the other terms that appear when n = 2. We focus

on those shown in Figures 7a) and 7b) for the case of C(2,2,0). In the first case, where we all the magnons are in the
upper hexagons, the contribution from the form factors and twists is

Hu1u2Hv1v2r2
j,k=1 Hujvk

STr [·–2
u1 ·

–2
u2 (Su1u2 Sv1u2 Sv2u2 Sv1u1 Sv2u1 Sv2v1) ·

0
v1 ·

0
v2 (Sv1v2 Su1v2 Su1v1 Su2v2 Su2v1 Su2u1)] . (65)

Using unitarity and crossed unitarity (35), this simply reduces to
1

Ha1a2(u1, u2) T
(–2)
a1 T

(–2)
a2

2 1
Hb1b2(v1, v2) T

(0)
a1 T

(0)
a2

2
= 0 . (66)

The analogous contribution to C(0,2,2) vanishes as well, whereas the one for C(2,0,2) gives part of the expansion of
B

2
¸ B

2
k, exactly as in the n = 1 case treated above. In the situation of Figure 7b), we have

hu2u1hv1v2

Hu1v1h2
v2u2hv1u2hv2u1

STr [·–2
u1 ·

–2
u2 (Sv1u1 Su2v2) ·

0
v1 ·

0
v2 (Sv1v2 Su1v2 Su1v1 Su2v2 Su2v1 Su2u1)] . (67)

• we order the contours of integration on the three bridges such that 

r`

r`+k

rk

G(u,v,w)

Ḡ(u,v,w)

e�ip̃(u)r`

e+ip̃(u)r`

O(u)

Ō(u)

O(u,v)

e+ip̃(v)r`

e+i(p̃(v)�p̃(u))r`

C(3)

(1,1,1) = C(2)

(1,1,1) = �C(1)

(1,1,1)

1

2
C(1,1,0) C(1,0,1)

1

4
C(1,0,0) C(1)

(1,1,1)

1

4
C(1,0,0) C(2)

(1,1,1)

zz̄ =
x2ij x

2

kl

x2il x
2

jk

h0|O(0)|u1, u2i
L1 L2 L3

� = diag(1Nc ,! 1Nc , . . .!
K�1 1Nc)

O(0)

` (x) =
1p
K

Tr Z`(x) , O(↵)
` (x) =

1p
K

Tr �↵Z`(x) . (155)

�(↵)
` = �(0)

` = `

T (↵)
a = STra ⌧

↵
a = 4as↵ , (156)

Imu > Imv > Imw
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explicitly:

- only one of the terms survives when we close the contour of integration of  in the u.h.p. 
and catch the double pole at  from 

v
u = v h2

aa(u, v)

3

Figure 2. Magnon configurations responsible for di�erent contributions. Left: Bridge contribution. Contributions from
magnons on di�erent bridges factorize into a product of contributions from each bridge unless the rapidities of magnons
on di�erent bridges coincide. Middle: Wrapping contribution. When rapidities of magnons of two adjacent bridges
coincide, we will have contact terms leading to the wrapping contributions, denoted by thick black lines. Right: Bridge-like
contribution. When magnons living on three di�erent bridges have coinciding rapidities, new contact terms arise that lead
to the bridge-like contribution, denoted by the thick black curve.

labeled by a, can be explicitly performed, leading to the
the weight ‰g(t) in the Fourier representation

4s–‰g(t) =
ÿ

a>1
T

(–)
a e

ta/2g
, (14)

which allows (9) to be rewritten [? ? ? ] in the form

B
(–)
L = det(1 ≠ s–KL) . (15)

Note that s0 = 0, so that this contribution is trivial for
the bridge without twist.
Wrapping contribution. The hexagon form factors de-
velop poles when the rapidities of magnons in adja-
cent bridges coincide. This property, known as decou-

pling condition, corresponds physically to a “magnon-
antimagnon” pair – or wrapping magnon – decoupling
from the hexagon and going to infinity, i.e. approach-
ing the operator insertion points. The regularization of
these singularities using the genus-two surface, discussed
later in the text and in more detail in the Supplementary
Material, allows to collect contact terms into a partition
function of the wrapping magnons. For a given operator
that contains the twists – and — and has length L, we
find that the contribution of these contact terms is given
by W

(–+—)
L , with

1
W

(–)
L

22
= 1 +

Œÿ

n=1

1
n!

nŸ

k=1

A Œÿ

ak=1

⁄ duk

2fi
e

≠LẼak
(u)

B
Wn ,

(16)

where

Wn © (≠i)n
ˆv STr

Ë
·

–
a Sab(u, v) ·

—
b Sab(u, v)

È ---
væu

,

(17)

and

·
–
a =

nŸ

k=1
·

–
ak

, Sab(u, v) =
nŸ

i=1

nŸ

j=1
Sai,bj (ui, vj) . (18)

Here Sab(u, v) denotes Beisert’s scattering matrix [? ?

? ] for mirror bound states. After taking the derivatives
with respect to v, the two groups of n rapidities u and
v are identified, and then the integrals over u are per-
formed. A similar structure arises for hexagons in the
fishnet theory [? ]. Importantly, the result only depends
on the product of the twists and sum of the lengths of
each bridge. Moreover, for untwisted operators, this con-
tribution is absent.

Although we did not manage to evaluate (17) explicitly
for arbitrary n, we conjecture that the result matches

1
W

(–)
L

22
= 1

det(1 ≠ s–KL≠1) det(1 ≠ s–KL+1) . (19)

We verified this up to three virtual magnons, see the
discussions around (24) for more details.
Bridge-like contribution. The most nontrivial contribu-
tion is the bridge-like contribution, coming from con-
tact terms in which the rapidities of magnons on three
di�erent bridges coincide. They can be also computed
using the genus-two regularization. Our analysis, ex-
plained in Supplemental Material, shows that the three
magnons e�ectively merge, creating an excitation resem-
bling the usual bridge magnons, with the twist given by
·

–1·
–2 = ·

–3 and an e�ective bridge length ¸ + k = p.
The computation of the first few terms in their expansion
and general arguments suggest

B
(–3)
p = det(1 ≠ s–3Kp) . (20)

Final result. As we explain in the Supplemental Mate-
rial, these contributions factorize, leading to an expres-
sion that is simply a product of all the terms. The final
answer matches the localization result (4), and this is
our main result. In the rest of this paper, we give more
technical details.
Regularization on the genus-two surface. As men-
tioned earlier, we need to address the singularities of the
integrand that arise when the rapidities of magnons on
di�erent bridges coincide. The importance of such sin-
gularities was highlighted in [? ], where the one-magnon

12

Figure 6. Distribution of two magnons on opposite sides of the first pair of pants, according to (60).

the left and right octagons are mirror images of one another, i.e. ω = ε. In those cases, the S-matrices simply cancel
and the super-trace trivially reduces to STr

∏n
k=1 ϑ

ω2
ak

=
∏n

k=1 T
(ω2)
ak . The sum then becomes

C(n,0,0) = 1
n!

n∏

k=1

( →∑

ak=1

∫ duk

2ϖ
µak (uk) e

↑εẼak
(u)

T
(ω2)
ak

)
∑

ϑ↓ϑ̄=u

H(ε) H(ε̄) (57)

= 1
n!

n∏

k=1

( →∑

ak=1

∫ duk

2ϖ
e

↑εẼak
(u)

)
n∑

m=0

(
n

m

)
Bm Bn↑m . (58)

We recognize the last line of the equation above as the n-th order term in the expansion of
(
B

(ω2)
ε

)2
. Therefore,

→∑

n=0
C(n,0,0) =

(
B

(ω2)
ε

)2
. (59)

The situation is obviously similar for the other bridges, and we obtain (49).

b) Wrapping

One-wrapping contribution. As was explained before, the decoupling poles are responsible for the wrapping contri-
butions. The simplest configurations for which they appear involve two magnons in di!erent mirror seams, such as
C(1,1,0) where one magnon is on the seam of length ϱ and the other that of length 0. In the following, we describe
how the regularization of these poles generates the wrapping contributions. According to our prescription, we begin
by cutting the pairs of pants G(u, v) and Ḡ(u, v) into hexagons, as shown in Figure 6,

G(u, v) = ςa Sba(v, u) ςa

hab(u, v) → e
ip̃b(v)rω → e

↑ip̃a(u)rω + e
i(p̃b(v)↑p̃a(u))rω

ςa Sab(u, v) ςa

hba(v, u) , (60)

Ḡ(u, v) = ςa Sab(u, v) ςa

hba(v, u) → e
↑ip̃b(v)rω → e

ip̃a(u)rω + e
i(p̃a(u)↑p̃b(v))rω

ςa Sba(v, u) ςa

hab(u, v) . (61)

The next step is to compute STrab ϑa G(u, v) ϑ
0
b Ḡ(u, v). Taking the trace with the help of (36), we see that all

diagonal terms (the ones in which the exponential factors cancel) are equal to T
(ω2)
a T

(0)
b = 0. For the other one-

wrapping contributions, corresponding to C(1,1,0) and C(0,1,1), we would get T
(ω1)
a T

(0)
b = 0 and T

(ω2)
a T

(ω1)
b respectively.

Therefore, the diagonal terms do not give any contribution to C(1,1,0) and C(0,1,1), whereas for C(1,0,1), they contribute
to the B

2
ε B

2
k part of (51).

For the remaining terms, we want to perform the integral over v by closing the integration contours in the upper
or lower half-plane. The choice of half-plane is dictated by the behavior of the factors e

±ip̃b(v)rω , with p̃b(v) ↑ 2v

at large v. Due to the presence of the decoupling poles, the integrals are only well defined if the u and v contours
do not intersect. Throughout this Supplemental Material, we choose to set Im u = +φ for with small positive φ and
Im v = 0, as well as Im w = →φ for magnons on the third mirror edge, see below. We stress that the final results do
not depend on the ordering we choose for the contours, provided we keep the same for all the computations. When

T (ω)
a = STra ω

ω
a = 4asω , (156)

T (ω)
a = STra ε

ω
a = 4asω , (157)

Imu > Imv > Imw

G(u, v) = ωa Sba(v, u) ωa
hab(u, v)

→ eip̃b(v)rω → e→ip̃a(u)rω + ei(p̃b(v)→p̃a(u))rω
ωa Sab(u, v) ωa

hba(v, u)
(158)

Ḡ(u, v) = ωa Sab(u, v) ωa
hba(v, u)

→ e→ip̃b(v)rω → eip̃a(u)rω + ei(p̃a(u)→p̃b(v))rω
ωa Sba(v, u) ωa

hab(u, v)
(159)

BL↑OO↓MSDAY

Oε(g, z, z̄,ϑ, ϑ̄) = 1 +
↑∑

n=1

Xn(z, z̄,ϑ, ϑ̄) In,ε(z, z̄) (160)
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1
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∫
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Paj ,ak(uj, uk)
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zz̄

sin aϱ
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↔ µa(u)↔ e→εEa(u) ↔ (zz̄)→ipa(u)
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• any number of magnons  result for the (square of the) wrapping  contribution⟶

CUk,T`,T̄p
=

p
k`pp
2N

r
1 +

1

2`
g@g lnGT`

r
1 +

1

2p
g@g lnGTp , (146)
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2N
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2`
g@g lnGT`

r
1 +

1
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g@g lnGTk

.
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(147)
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k,`,p = (bridge)⇥ (wrapping)⇥ (bridge-like)

(bridge) = det (1� s↵1Kk) det (1� s↵2K`)
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(148)
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Hopen

XXZ
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ej

psu(2|2)L ⇥ psu(2|2)R ! psu(2|2)L ⇥ [su(2)⇥ su(2)]R

1

(u� v � i✏)(u� v + i✏)
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✏
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H1
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✏
STra 1a ⇥ STra ⌧a = 0

K̃aa(u, u) = �i STra⌦b{Sba(v
�, u�) ⌧a @uSab(u
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u, a
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contribution was explicitly evaluated. As shown there,
the divergences stem from the infinite size of the mirror
channels, where the virtual magnons live.

A natural way to regularize these divergences is to in-
troduce a cut-o� on the volume of these spaces. In gen-
eral, the regularized singularities yield both a divergent,
or volume-dependent, term proportional to the anoma-
lous dimensions of the operators, and a finite term con-
tributing to the structure constant. In our case, the di-
vergent term is absent, as the dimension of our operators
is protected but the finite term remains nontrivial.

A systematic evaluation of such finite contributions for
arbitrary excited operators is still an open problem in the
hexagon program for correlation functions in N = 4 SYM
theory. In [35, 36], it was suggested that both the volume-
dependent and finite terms for the three-point function
can be controlled by considering the OPE limit of a four-
point function. This can be worked out explicitly in the
fishnet theory [46], where the hexagon approach to cor-
relation functions can be derived from first principles by
constructing separated variables for a non-compact, in-
tegrable spin chain [47, 48].

Here, we take a similar but slightly di�erent approach
to [35, 36] and regulate the infinite volumes by gluing
two three-point functions into a genus-two surface. The
genus-two surface provides a natural and physical cut-o�
for the square of the structure constant, whose partition
function can be computed by gluing together two pairs
of pants with mirror edges, see Figure 3.

We develop this idea in the Supplemental Material and
show how the wrapping and bridge-like magnons arise
from the contact terms of two and three magnons. We
also explain how the factorization happens and give some
examples.
Structure of the wrapping contribution. Our con-
jectured finite-coupling expression for the square of the
wrapping contribution (19) is remarkably similar to its
bridge counterpart (15). This suggests that Wn can be
expressed in a closer way to Bn in (9), which would be
ideal for checking the conjecture.

To do so, let us first consider the bridge contribution
B

(–)
L , given by the octagon, and take its logarithm. As

shown in [22, 27, 28], the octagon can be expressed as
a Fredholm Pfa�an and its logarithm admits a simple
series expansion:

ln B
(–)
L =

Œÿ

n=1

1
n

nŸ

k=1

Œÿ

ak=1

⁄ duk

2fi
e

≠LẼak CBn , (21)

where CBn denotes the “connected part” whose details
can be found in [22, 27]. Equating this with the expansion
of ln det(1 ≠ K) appearing in (15), we obtain an identity

nŸ

k=1

Œÿ

ak=1

⁄ duk

2fi
e

≠LẼak CBn = ≠s
n
– Tr K

n
L . (22)

Now, by computing the first few terms of (16), we
found that the logarithm of the wrapping contribution

also admits a simple expansion,

2 ln W
(–)
L =

Œÿ

n=1

1
n

nŸ

k=1

Œÿ

ak=1

⁄ duk

2fi
e

≠LẼak CWn , (23)

with

CWn = ≠
3

e

qn

i=1
ÂEai + e

≠
qn

i=1
ÂEai

4
CBn , (24)

Thanks to the identity (22), this immediately implies

nŸ

k=1

Œÿ

ak=1

⁄ duk

2fi
e

≠LẼak CWn = s
n
–Tr

!
K

n
L≠1 + K

n
L+1

"
,

(25)

which gives our conjecture (19) after the exponentiation.
We have verified the relation (24) up to n = 3 by tak-

ing the derivative and traces in (17) with the help of a
computer. For n 6 2, the verification can be done by
hand using the following partial trace identities:

STra S≠1
ab ·

–
a Sab = T

(–)
a Hab 1b , (26)

2i STra S≠1
ab ˆuSab = ka(u) (1 ≠ Hab) 1b ,

2 STrab S≠1
ab ˆuˆvSab = p

Õ
a(u) p

Õ
b(v) (1 ≠ Hab) ,

where we define ka(u) and p
Õ
a(u) via

ka ± p
Õ
a = ≠2 e

±ÂEaµa , (27)

where Hab © Hab(u, v), and we recall that Sab ©
Sab(u, v) is the mirror S-matrix. The indices on the
super-trace indicates which spaces are traced over. For
higher n > 3 more complicated multiple traces occur.
However, for all n, the fundamental building blocks re-
main the same: p

Õ
a, ka and Hab.

Conclusion and outlook. We generalized the hexagon
formalism to the ZK orbifold N = 2 SCFT, obtain-
ing closed form expressions of various building blocks
and reproducing localization results up to three virtual
magnons (but nonperturbative in the ’t Hooft coupling).
A general proof seems within reach. Our findings sug-
gest that recent progress in integrability for N = 4 SYM
can be extended to a broader class of integrable N = 2
SCFTs, opening numerous future directions:

• Studying the long-quiver limit of the ZK orbifold
quiver N = 2 SCFTs, discussed in e.g. [20, 49].

• Applying this method to other correlation functions
in ZK-orbifold theories, e.g. three-point functions
of non-BPS operators and higher-point functions.

• Investigating whether planar three-point functions
away from the ZK-orbifold points can also be ex-
pressed as Fredholm determinants, which may hint
at integrability beyond the orbifold point [8, 50, 51].

: Beisert’s scattering matrix for mirror bound states a, b

• conjecture (checked up to ): the (inverse square of the) wrapping contribution can be 
written as a product of Fredholm determinants

n = 3
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Figure 7. Di�erent distributions of magnons that potentially contribute to C(2,2,0).

computing the integrals over v by residues the main contribution will be from the decoupling pole at (v, b) = (u, a).
These contributions are what we call contact terms. The integrand might contain other poles in the complex plane
at positions v = vú but their contribution will be weighted by e

≠|Im p̃b(vú)|r¸ , and will be suppressed when r¸ æ Œ.
It becomes clear then that the only surviving contact term will be

C(1,1,0) = lim
r¸æŒ

Œÿ

a,b=1

⁄ du dv

(2fi)2 µa(u) µb(v) e
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STrab ·
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0
b Sab(u, v)

h
2
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" ---
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For the last equality, we have used (30) and the fact that the terms where the v derivative acts outside the super-trace
are zero, since STrab ·

–2
a Sab(u, v) ·

0
b Sab(u, v)|væu = STrab ·

–2+0
a 1b = 0. This explains in particular why there are no

volume-dependent corrections in the wrapping terms, which would come from the derivative acting on the exponential
factor depending on r’s. All the discussion above can be adapted for the other pairings as well.

Multi-wrapping contributions. It is clear from the discussion above that the configurations with magnons on two
out of the three seams contain many terms, and we claim that they resum to (51). However, in order to isolate
the wrapping contributions, without any bridge contributions, it is enough to consider configurations with the same
number n of magnons on two seams. The wrapping contributions then come from the unique term in which we must
perform n of the 2n integrals, thus identifying the two sets of n rapidities (see Figure 7c)). Namely, for C(n,n,0),
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2

, (63)

where we have used the Yang–Baxter equation and unitarity to simplify the matrix part. Using the property (30) we
can perform the integration in the vk’s by closing the integration contours in the upper half-plane and picking the
residues at some decoupling poles. We point out that two rapidities vi and vk cannot decouple to the same rapidity
uj . This happens because of presence of the factor H(v) in the numerator and because the trace vanishes when two
(bi, vi) and (bk, vk) are equal to the same (aj , uj). There are thus n! ways of identifying the uj = vk and all of them
are equivalent because the integrand is completely symmetric in the uj ’s and, separately, in the vk’s. The final result
is
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Clearly, a similar computation applies to C(n,0,n) and C(0,n,n).

Regulating the singularities in finite volume: wrapping
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Figure 2. Magnon configurations responsible for di�erent contributions. Left: Bridge contribution. Contributions from
magnons on di�erent bridges factorize into a product of contributions from each bridge unless the rapidities of magnons
on di�erent bridges coincide. Middle: Wrapping contribution. When rapidities of magnons of two adjacent bridges
coincide, we will have contact terms leading to the wrapping contributions, denoted by thick black lines. Right: Bridge-like
contribution. When magnons living on three di�erent bridges have coinciding rapidities, new contact terms arise that lead
to the bridge-like contribution, denoted by the thick black curve.

labeled by a, can be explicitly performed, leading to the
the weight ‰g(t) in the Fourier representation

4s–‰g(t) =
ÿ

a>1
T

(–)
a e

ta/2g
, (14)

which allows (9) to be rewritten [? ? ? ] in the form

B
(–)
L = det(1 ≠ s–KL) . (15)

Note that s0 = 0, so that this contribution is trivial for
the bridge without twist.
Wrapping contribution. The hexagon form factors de-
velop poles when the rapidities of magnons in adja-
cent bridges coincide. This property, known as decou-

pling condition, corresponds physically to a “magnon-
antimagnon” pair – or wrapping magnon – decoupling
from the hexagon and going to infinity, i.e. approach-
ing the operator insertion points. The regularization of
these singularities using the genus-two surface, discussed
later in the text and in more detail in the Supplementary
Material, allows to collect contact terms into a partition
function of the wrapping magnons. For a given operator
that contains the twists – and — and has length L, we
find that the contribution of these contact terms is given
by W

(–+—)
L , with

1
W

(–)
L

22
= 1 +

Œÿ

n=1

1
n!

nŸ

k=1

A Œÿ

ak=1

⁄ duk

2fi
e

≠LẼak
(u)

B
Wn ,

(16)

where

Wn © (≠i)n
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Ë
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–
a Sab(u, v) ·

—
b Sab(u, v)

È ---
væu

,

(17)

and

·
–
a =

nŸ

k=1
·

–
ak

, Sab(u, v) =
nŸ

i=1

nŸ

j=1
Sai,bj (ui, vj) . (18)

Here Sab(u, v) denotes Beisert’s scattering matrix [? ?

? ] for mirror bound states. After taking the derivatives
with respect to v, the two groups of n rapidities u and
v are identified, and then the integrals over u are per-
formed. A similar structure arises for hexagons in the
fishnet theory [? ]. Importantly, the result only depends
on the product of the twists and sum of the lengths of
each bridge. Moreover, for untwisted operators, this con-
tribution is absent.

Although we did not manage to evaluate (17) explicitly
for arbitrary n, we conjecture that the result matches

1
W

(–)
L

22
= 1

det(1 ≠ s–KL≠1) det(1 ≠ s–KL+1) . (19)

We verified this up to three virtual magnons, see the
discussions around (24) for more details.
Bridge-like contribution. The most nontrivial contribu-
tion is the bridge-like contribution, coming from con-
tact terms in which the rapidities of magnons on three
di�erent bridges coincide. They can be also computed
using the genus-two regularization. Our analysis, ex-
plained in Supplemental Material, shows that the three
magnons e�ectively merge, creating an excitation resem-
bling the usual bridge magnons, with the twist given by
·

–1·
–2 = ·

–3 and an e�ective bridge length ¸ + k = p.
The computation of the first few terms in their expansion
and general arguments suggest

B
(–3)
p = det(1 ≠ s–3Kp) . (20)

Final result. As we explain in the Supplemental Mate-
rial, these contributions factorize, leading to an expres-
sion that is simply a product of all the terms. The final
answer matches the localization result (4), and this is
our main result. In the rest of this paper, we give more
technical details.
Regularization on the genus-two surface. As men-
tioned earlier, we need to address the singularities of the
integrand that arise when the rapidities of magnons on
di�erent bridges coincide. The importance of such sin-
gularities was highlighted in [? ], where the one-magnon

7

SUPPLEMENTAL MATERIAL

Useful properties

We collect here some properties of the dynamical factors and S-matrix for arbitrary bound states that will be used
below,

hab(u2“
, v

2“) = hab(u, v) , hab(u4“
, v) = 1

hba(v, u) , (28)

hab(u, v) hba(v, u) = Hab(u, v) , Hab(u2“
, v) = 1

Hab(u, v) , (29)

haa(u2“
, u) = 1 , lim

væu

(v ≠ u)
hab(u, v) = i ”ab

µa(u) , (30)

Sab(u2“
, v

2“) = Sab(u, v) , Sab(u4“
, v) = Sab(u, v

4“) = Ÿa Sab(u, v) Ÿa = Ÿb Sab(u, v) Ÿb . (31)

The crossing relation for the scattering matrices is given by

Sab(u2“
, v) = 1

hab(u, v) hab(u2“ , v) Ca
ta(S≠1

ab )(u, v) C≠1
a , (32)

where the crossing matrix satisfies taCa = (≠1)aCa, C2
a = Ÿa = diag(≠1B , 1F ), Ca

taSabC≠1
a = Cb

tbSabC≠1
b and [Ca, Ÿa] =

0. The superscript ta indicates the partial super-transposition in the space a. The super-transpose of an arbitrary
matrix M is given in components by

(t
M)ij = (≠1)fifj+fiMji , (33)

where fi is the fermion number in state i. Notice that this definition implies that

ta(taM) = ŸaMŸa , Tra(taM
taN) = STra(MŸaN) , (34)

for arbitrary matrices M and N . From the crossing relation and equation (31), one deduces the “crossed unitarity”
property

taSab
ta

!
S≠1

ab

"
= Hab 1ab . (35)

Using this relation and the observation (34), we get that for any of our twist matrices · ,

STra Sab ·a S≠1
ab = STra S≠1

ab ·a Sab = STra(·a) Hab 1b . (36)

We also have

Saa(u, u) = Pg
, (37)

where Pg is the graded permutation. Mathematica experiments with the code provided in [53] suggest that the
following formulas also hold,

2i STra S≠1
ab ˆuSab = ka(u) (1 ≠ Hab) 1b , (38)

2 STrab S≠1
ab ˆuˆvSab = p

Õ
a(u) p

Õ
b(v) (1 ≠ Hab) , (39)

with p
Õ
a and ka(u) defined through

ka ± p
Õ
a = ≠2 e

±ÂEaµa , pa = i ln(x[≠a]
/x

[+a]) . (40)

We leave the analytical proof of these formulas for a subsequent work.
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e→εẼak(u)

)
Wn , (150)

Wn ↔ STr
n∏

k=1

ϱωak(↑i εvk)

(
n∏

i,j=1

Sai,bj(ui, vj)

)(
n∏

i,j=1

Sai,bj(ui, vj)

)∣∣∣∣∣
v↓u

. (151)

(
W (ω)

ε

)→2

= det(1↑ sωKε→1) det(1↑ sωKε+1) . (152)

psu(2, 2|4) ↗ su(2, 2|2)↓ su(2)

ϱ ↗ 1L ↓ diag(1F ,↑1B)R ↔ 1L ↓ ϱR

V (zi, zj) =
zizj
zijzji

=
1

4 sin2 ϖ(i↑ j)/N

Hopen

XXZ
= ↑

N→1∑

j=1

ej

45

[Ferrando, Olivucci, unpublished]• a comparable (but more complicated) structure for fishnets

[De Leeuw, Eden, Sfondrini, 20]checked with the code of  



• result for the bridge-like contribution from the contact terms below (and those rotated by )π
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Regulating the singularities in finite volume: bridge-like

3

Figure 2. Magnon configurations responsible for di�erent contributions. Left: Bridge contribution. Contributions from
magnons on di�erent bridges factorize into a product of contributions from each bridge unless the rapidities of magnons
on di�erent bridges coincide. Middle: Wrapping contribution. When rapidities of magnons of two adjacent bridges
coincide, we will have contact terms leading to the wrapping contributions, denoted by thick black lines. Right: Bridge-like
contribution. When magnons living on three di�erent bridges have coinciding rapidities, new contact terms arise that lead
to the bridge-like contribution, denoted by the thick black curve.
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on the product of the twists and sum of the lengths of
each bridge. Moreover, for untwisted operators, this con-
tribution is absent.

Although we did not manage to evaluate (17) explicitly
for arbitrary n, we conjecture that the result matches

1
W

(–)
L

22
= 1

det(1 ≠ s–KL≠1) det(1 ≠ s–KL+1) . (19)

We verified this up to three virtual magnons, see the
discussions around (24) for more details.
Bridge-like contribution. The most nontrivial contribu-
tion is the bridge-like contribution, coming from con-
tact terms in which the rapidities of magnons on three
di�erent bridges coincide. They can be also computed
using the genus-two regularization. Our analysis, ex-
plained in Supplemental Material, shows that the three
magnons e�ectively merge, creating an excitation resem-
bling the usual bridge magnons, with the twist given by
·

–1·
–2 = ·

–3 and an e�ective bridge length ¸ + k = p.
The computation of the first few terms in their expansion
and general arguments suggest

B
(–3)
p = det(1 ≠ s–3Kp) . (20)

Final result. As we explain in the Supplemental Mate-
rial, these contributions factorize, leading to an expres-
sion that is simply a product of all the terms. The final
answer matches the localization result (4), and this is
our main result. In the rest of this paper, we give more
technical details.
Regularization on the genus-two surface. As men-
tioned earlier, we need to address the singularities of the
integrand that arise when the rapidities of magnons on
di�erent bridges coincide. The importance of such sin-
gularities was highlighted in [? ], where the one-magnon
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Ō(u)

O(u,v)

e+ip̃(v)r�

e+i(p̃(v)�p̃(u))r�

C(3)
(1,1,1) = C(2)

(1,1,1) = �C(1)
(1,1,1)

References

46

e�ip̃(u)r�

e+ip̃(u)r�

O(u)
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Figure 8. Three three-magnon configurations giving rise to the bridge-like contribution C(j)
(1,1,1), j = 1, 2, 3. The configurations

rotated by 180¶ contribute the same amount. The pairs of magnons (u, w), (u, v) and (w, v) are transported through the legs
of lengths rl+k, r¸ and rk respectively.

Then, performing the integral over v by closing the contour in the lower half-plane and picking the pole in (b, v) =
(c, w), we arrive at

C(1)
(1,1,1) = ≠

Œÿ

c=1
T

(–3)
c

⁄ dw

2fi
e

≠(¸+k)Ẽc(w)
µc(w) . (74)

When we computed the integral over u, we should have also picked the residue of the apparent double pole at
(a, u) = (c, w). However, one can use (26) to show that it vanishes.

There are other configurations that contribute. Two of them are obtained from the one we have already considered
by bringing down either the pair (u, v) or the pair (v, w) on the left pair of pants, see Figure 8. The first one produces

C(2)
(1,1,1) = lim

r¸+kæŒ

Œÿ

a,b,c=1

⁄ du dv dw

(2fi)3 µa(u) µb(v) µc(w) e
≠¸ÂEa(u)≠kÂEc(w)+i(p̃c(w)≠p̃a(u))r¸+k+i(p̃b(v)≠p̃a(u))r¸

◊ STrabc ·
–2
a Sab(u, v) ·

–1
c Sac(u, w)

hab(v, u) hca(w, u) =
Œÿ

c=1
T

(–3)
a

⁄ du

2fi
e

≠(¸+k)Ẽa(u)
µa(u) , (75)

where we computed the integrals over v and w by closing the contours in the upper half-plane and picking the residues
of the simple decoupling poles at (b, v) = (a, u) and (c, w) = (a, u). The second configuration yields the same result,

C(3)
(1,1,1) = C(2)

(1,1,1) = ≠C(1)
(1,1,1) .

The last three non-vanishing configurations can be obtained graphically by rotating the previous three by 180°,
hence they are equal to those we have previously computed. Summing up the six non-zero configurations we obtain
indeed the first non-trivial term in the expansion of

1
B

(–3)
p

22
,

C(1,1,1) = 2
1

C(1)
(1,1,1) + C(2)

(1,1,1) + C(3)
(1,1,1)

2
= 2 C(2)

(1,1,1) = 2
Œÿ

a=1

⁄ du

2fi
e

≠¸ÂEa(u) B1

---
¸æ¸+k

. (76)

By inspection, these are the only non-vanishing terms where the three rapidities can be identified. Other terms with
non-coinciding rapidities can be studied in the same way as in the previous sections and are contained in either1
B

(–1)
k W

(–2)
¸

22
or

1
B

(–2)
¸ W

(–1)
k

22
.

Multi-magnon bridge-like contributions. We remark that although it is di�cult to explicitly compute the higher
bridge-like contributions, they will come from configurations which are superpositions of copies of the diagrams of
Figure 8 (and their rotated counterparts). As an example, consider the diagram formed by combining two copies of
C(2)

(1,1,1) in 8. The hexagons together with the combinatorial factors in (45) give, after using the Yang–Baxter relation
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Figure 8. Three three-magnon configurations giving rise to the bridge-like contribution C(j)
(1,1,1), j = 1, 2, 3. The configurations

rotated by 180¶ contribute the same amount. The pairs of magnons (u, w), (u, v) and (w, v) are transported through the legs
of lengths rl+k, r¸ and rk respectively.

Then, performing the integral over v by closing the contour in the lower half-plane and picking the pole in (b, v) =
(c, w), we arrive at

C(1)
(1,1,1) = ≠

Œÿ

c=1
T

(–3)
c

⁄ dw

2fi
e

≠(¸+k)Ẽc(w)
µc(w) . (74)

When we computed the integral over u, we should have also picked the residue of the apparent double pole at
(a, u) = (c, w). However, one can use (26) to show that it vanishes.

There are other configurations that contribute. Two of them are obtained from the one we have already considered
by bringing down either the pair (u, v) or the pair (v, w) on the left pair of pants, see Figure 8. The first one produces

C(2)
(1,1,1) = lim

r¸+kæŒ

Œÿ

a,b,c=1

⁄ du dv dw

(2fi)3 µa(u) µb(v) µc(w) e
≠¸ÂEa(u)≠kÂEc(w)+i(p̃c(w)≠p̃a(u))r¸+k+i(p̃b(v)≠p̃a(u))r¸

◊ STrabc ·
–2
a Sab(u, v) ·

–1
c Sac(u, w)

hab(v, u) hca(w, u) =
Œÿ

c=1
T

(–3)
a

⁄ du

2fi
e

≠(¸+k)Ẽa(u)
µa(u) , (75)

where we computed the integrals over v and w by closing the contours in the upper half-plane and picking the residues
of the simple decoupling poles at (b, v) = (a, u) and (c, w) = (a, u). The second configuration yields the same result,

C(3)
(1,1,1) = C(2)

(1,1,1) = ≠C(1)
(1,1,1) .

The last three non-vanishing configurations can be obtained graphically by rotating the previous three by 180°,
hence they are equal to those we have previously computed. Summing up the six non-zero configurations we obtain
indeed the first non-trivial term in the expansion of

1
B

(–3)
p

22
,

C(1,1,1) = 2
1

C(1)
(1,1,1) + C(2)

(1,1,1) + C(3)
(1,1,1)

2
= 2 C(2)

(1,1,1) = 2
Œÿ

a=1

⁄ du

2fi
e

≠¸ÂEa(u) B1

---
¸æ¸+k

. (76)

By inspection, these are the only non-vanishing terms where the three rapidities can be identified. Other terms with
non-coinciding rapidities can be studied in the same way as in the previous sections and are contained in either1
B

(–1)
k W

(–2)
¸

22
or

1
B

(–2)
¸ W

(–1)
k

22
.

Multi-magnon bridge-like contributions. We remark that although it is di�cult to explicitly compute the higher
bridge-like contributions, they will come from configurations which are superpositions of copies of the diagrams of
Figure 8 (and their rotated counterparts). As an example, consider the diagram formed by combining two copies of
C(2)

(1,1,1) in 8. The hexagons together with the combinatorial factors in (45) give, after using the Yang–Baxter relation

• computed by closing the contours over  and  and taking the poles at  
and 

v w (b, v) = (a, u)
(c, w) = (a, u)

• all magnon contribution:

10

Figure 5. Cutting mirror pants into hexagons along a physical bridge of length r¸ and transporting excitations from one hexagon
to another. An orientation is needed to define the transport factors for the magnons moving from a hexagon to the other. A
magnon with momentum p̃(u) gets a factor eip̃(u)r¸ when it crosses the bridge of length r¸ in the direction of the arrow, as in
right pair of pants, and e≠ip̃(u)r¸ when it moves against them, as for the left one.

• Bridge-like contributions. The decoupling singularities also give rise to a contribution that looks like a regular
bridge contribution with e�ective bridge length p. They come from contact terms where magnons excitations in
three di�erent channels coincide, and thus are contained in the configurations with the same number of magnons
in all three mirror edges, as in Figure 8. We have

Œÿ

n=0
C(n,n,n) ∏

1
B

(–3)
p

22
. (52)

a) Bridge

One-magnon bridge contribution. Let us start by considering the configuration with one single magnon u in the
mirror seam with length R¸ gluing the two mirror pair of pants in Figure 3. Using (45), this is equal to

C(1,0,0) = lim
r¸æŒ

Œÿ

a=1

⁄ du

2fi
µa(u)e≠¸ÂEa(u) STra

!
·

–2
u G(u) G(u)

"
(53)

with G(u) and G(u) represented in Figure 5. The transition factor e
≠ip̃a(u)r¸ appears when a magnon crosses from the

upper to the lower hexagon on the left pair of pants G(u), while e
ip̃a(u)r¸ appears when a magnon crosses from the

upper to the lower hexagon on the right pair of pants, G(u).

Plugging these building blocks in (53), we get

C(1,0,0) = lim
r¸æŒ

Œÿ

a=1

⁄ du

2fi
µa(u) e

≠¸ÂEa(u)
T

(–2)
a

1
1 ≠ e

≠ip̃a(u)r¸ ≠ e
ip̃a(u)r¸ + 1

2
= 2

Œÿ

a=1

⁄ du

2fi
e

≠¸ÂEa(u) B1 (54)

with T
(–)
a = STr ·

–
a = 4as–. When r is large, the two middle terms in (54) oscillate rapidly and their contributions

are thus suppressed when integrated. Notice that we get twice the one-magnon bridge contribution, as expected since
we are computing the square of the structure constant.

Multi-magnon bridge contributions. This argument extends almost straightforwardly to C(n,0,0), with n excitations
on one seam and none on the other two.

C(n,0,0) = lim
ræŒ

1
n!

⁄
du µ(u) e

≠¸ÂE(u)
ÿ

–fi–̄=u
—fi—̄=u

(≠1)|–̄|+|—̄|
e

≠i(p̃(–̄)≠p̃(—̄))r¸ h<(–)h<(–̄) h>(—)h>(—̄) · · · , (55)

where

h<(—) =
Ÿ

uj ,ukœ—
j<k

haj ,ak (uj , uk) , h>(—) =
Ÿ

uj ,ukœ—
j>k

haj ,ak (uj , uk) , H(—) = h<(—) h>(—) ,

factorisation of different contributions      final result as a product of Fredholm determinants⟶
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Figure 8. Three three-magnon configurations giving rise to the bridge-like contribution C(j)
(1,1,1), j = 1, 2, 3. The configurations

rotated by 180→ contribute the same amount. The pairs of magnons (u, w), (u, v) and (w, v) are transported through the legs
of lengths rl+k, rω and rk respectively.

Then, performing the integral over v by closing the contour in the lower half-plane and picking the pole in (b, v) =
(c, w), we arrive at

C(1)
(1,1,1) = →

→∑

c=1
T

(ω3)
c

∫ dw

2ω
e

↑(ε+k)Ẽc(w)
µc(w) . (74)

When we computed the integral over u, we should have also picked the residue of the apparent double pole at
(a, u) = (c, w). However, one can use (26) to show that it vanishes.

There are other configurations that contribute. Two of them are obtained from the one we have already considered
by bringing down either the pair (u, v) or the pair (v, w) on the left pair of pants, see Figure 8. The first one produces

C(2)
(1,1,1) = lim

rω+k↓→

→∑

a,b,c=1

∫ du dv dw

(2ω)3 µa(u) µb(v) µc(w) e
↑εẼa(u)↑kẼc(w)+i(p̃c(w)↑p̃a(u))rω+k+i(p̃b(v)↑p̃a(u))rω

↑ STrabc ε
ω2
a Sab(u, v) ε

ω1
c Sac(u, w)

hab(v, u) hca(w, u) =
→∑

a=1
T

(ω3)
a

∫ du

2ω
e

↑(ε+k)Ẽa(u)
µa(u) , (75)

where we computed the integrals over v and w by closing the contours in the upper half-plane and picking the residues
of the simple decoupling poles at (b, v) = (a, u) and (c, w) = (a, u). The second configuration yields the same result,

C(3)
(1,1,1) = C(2)

(1,1,1) = →C(1)
(1,1,1) .

The last three non-vanishing configurations can be obtained graphically by rotating the previous three by 180°,
hence they are equal to those we have previously computed. Summing up the six non-zero configurations we obtain
indeed the first non-trivial term in the expansion of

(
B

(ω3)
p

)2
,

C(1,1,1) = 2
(

C(1)
(1,1,1) + C(2)

(1,1,1) + C(3)
(1,1,1)

)
= 2 C(2)

(1,1,1) = 2
→∑

a=1

∫ du

2ω
e

↑εẼa(u) B1

∣∣∣
ε↓ε+k

. (76)

By inspection, these are the only non-vanishing terms where the three rapidities can be identified. Other terms with
non-coinciding rapidities can be studied in the same way as in the previous sections and are contained in either(
B

(ω1)
k W

(ω2)
ε

)2
or

(
B

(ω2)
ε W

(ω1)
k

)2
.

Multi-magnon bridge-like contributions. We remark that although it is di!cult to explicitly compute the higher
bridge-like contributions, they will come from configurations which are superpositions of copies of the diagrams of
Figure 8 (and their rotated counterparts). As an example, consider the diagram formed by combining two copies of
C(2)

(1,1,1) in 8. The hexagons together with the combinatorial factors in (45) give, after using the Yang–Baxter relation



Summary and outlook
• We showed that some correlation functions of local gauge invariant operators obtained by 

localisation techniques in terms of Fredholm determinants can be reproduced by 
integrability techniques as well 

• This opens the possibility to connect the two approaches, which have different ranges of 
applicability; one could use localisation to investigate the conjectures about integrability of 
the  SYM quiver theory with different gauge couplings [Pomoni et al]  

• One of the main outcomes of our work is an all-loop, all-magnon expression for the 
wrapping corrections for the structure constants of the twisted BPS operators  

• We hope this results will help to develop a systematic understanding of the wrappings 
corrections and the TBA for more generic structure constants, for example by 
considering twists that break supersymmetry 

• It would be instructive to interpret these results in the QSC language 

• Recently, the hexagon approach was set up for su(2) non-BPS operators at the tree-level 
in the  SYM  quiver theory [le Plat, Skrzypek, 25]; it would be useful to have 
higher-loop checks against perturbative computations 

• Replace the sum over mirror magnons by SoV integrals? [Bercini, Homrich, Vieira, 22; 
Bargheer et al, 25] 
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