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Motivation

- Many of the exact results concerning supersymmetric gauge theories were obtained by
either by localisation or by integrability, the two approaches being rather complementary

+ For the /=4 SYM gauge theory and its deformations, integrability allows a precise
determination of the spectrum of conformal dimensions via the QSC approach

- The construction of the QSC was achieved through a combination of algebraic methods,
based on the fusion properties of transfer matrices

- An equivalent formalism for correlation functions 1s less developed and the most reliable
descriptions is based on the form factor (aka hexagon) expansion

- In some simple cases the form factor expansion can be repackaged in terms of (Fredholm)
determinants, that can be studied with specific methods, see Grisha’s talk

+ Reducing the supersymmetry by twisting reveals some of the integrable structure and
allows to make contact with localisation. This 1s the case in particular for the Z orbifolds of
N =4 SYM



Outline

+ Correlation function in /" =4 SYM and the geometric decomposition in terms of

hexagons, cf. Benjamin’s talk

+ The simplest four-point correlation function as a Fredholm determinant and the octagon
kernel

- The /' =2 SYM quiver theory as a Z; orbifold of /' =4 SYM and results from
supersymmetric localisation

+ Results for three point function of A4 = 2 SYM quiver theory from integrability

- Conclusion and outlook



The hexagon decomposition of correlation functions
[Basso, Komatsu, Vieira, 15]

- the asymptotic part of the three point function can be written as a sum over partitions for
the three groups of rapidities w1 = oy Uag,up = g Uag,uz = az U ag
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-+ sewing back over the black (dotted) lines: insertion of an arbitrary number of virtual particles

- contribution of virtual particles exponentially suppressed if the bridges (12, (a3, €31 >> |
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The hexagon as a non-local form factor

- the hexagon can be seen as the infinite-volume form factor of a twist-like operator

inducing a curvature excess of 180 degrees, similar to [Cardy, Castro-Alvaredo, Doyon, 06]

+ solution for the hexagon form factors from form factor bootstrap (form factor axioms)

Had = TThy G a1 Shat o) X;") : psu(22)y, state
i< A
dynamical part matrix part [Beisert, 06] i) o psu(2[2)r state
« the dynamical part has zeros/poles at 2 — 1 1
h(v,u) = h(u*,v) =

coinciding rapidities: u—v+is(u,v)o(u,v)




The hexagon as building block for correlation
functions

- four point function by hexagon decomposition:

0,0,050,) =
[Fleury, Komatsu, 16; also Eden, Sfondrini, 16] (010:050,)

- the same technique can be used for any number of operator insertions:
hexagon decomposition «— triangulation of the sphere with n punctures

- sewing back hexagons implies insertion of an arbitrary number of virtual particles

- in general the sum over virtual particles 1s not easy to perform, except in the case of
the octagon, see below

- when a leg 1s formed by sewing different hexagons, divergences appear [Basso,

Goncalves, Komatsu, Vieira, 17] TBA structure

- a systematic resummation of the divergent terms was not yet achieved, but the general

structure was conjectured in [Basso, Georgoudis, Klemenchuk Sueiro, 22], cf. Benjamin’s
talk

- to delay dealing with these divergences one can start with the correlation functions of
BPS operators



Four point functions: the “simplest” correlation function

- four point function: dependence on two cross ratios:
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- for BPS operators with large R-charges and particular
polarisations: factorisation into two octagons [Coronado, 18]
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the sphere 1is cut into

two disks (octagons)

- analytical computation of the octagon by summing up the mirror particle contribution

— Fredholm determinant [Kostov, Petkova, D.S., 19]

- analysis of the Fredholm determinant in various regimes + resurgent analysis
[Belitsky, Korchemsky, 19-21; Bajnok, Boldis, Korchemsky, 24|



Four point functions: the “simplest” correlator

more general setting: octagon
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- two-particle interaction:  Pu(u,v) = K57 (u, v)KH (u, v)K 7 (u,v) K ;7 (u,v)  — Pfaffian
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Exact results for the octagon

parametrisation for the cross ratios: R )

Ou(z,z,a,) = % Y.+ Det (I — )\iK‘th)

[Kostov, Petkova, D.S., 19] sitmplified by [Belitsky, Korchemsky, 19]

- octagon (Bessel) kernel:

> dt
(K(gct)mn — —2\/(2777, + g + 1)(2% + € -+ ].) / 7 X(t) J2m+g_|_1(2gt) J2n+€_|_1(29t) m,n >0
0
V(1) = — ¢ —cosh§ contains all the information about the specifics of the
cos ¢ — cosh /1% + &2 correlation function (cross ratios, coupling constant,...)

- the octagon kernel is a rather universal object showing up in other instances, e.g.

- circular Wilson loop [Beccaria et al, 23] & form factor transitions in /4 = 4 SYM
[Sever, Tumanov, Wilhelm, 21; Basso, Tumanov, 23]

- sphere partition function; two- and three-point functions in the quiver ./" = 2 SYM theory,
obtained as a Z orbifold from /4 =4 SYM



N'=2 quiver SYM theory as a Z orbifold of ./'=4 SYM

[Kachru, Silverstein; Gukov, 98]

- aversion of /=4 SYM where the sphere part is twisted by a Z twist

Y = diag(lNc,wlNc,...wK_l 1Nc) W = 627m'/K
- the gauge group is SU(NC)®K and all the fields are K N. X K N_. matrices

same field content as ./ = 4 SYM, with definite action of the twist:

V(AL Z)yv = (A 2), (XY )y =w(X)Y), v (X, V)7 =0 (XY)
- (super) symmetry reduced from  psu(2,2[4) — su(2,2]2) x su(2)

+ magnon symmetry twisted by 7=(1,1,1,1); x g = (1,1,1,1); x (w,w™*,1,1)5 [Bertle et al, 24]

- expected to be integrable as well (at least when the K gauge group components share
the same coupling constant) [Beisert, Roiban, 05; Gadde, Rastelli, 10; Skrzypek, 23]

» results from supersymmetric localisation — matrix model [Pestun 07]:

- sphere partition function [Beccaria, Korchemsky, Tseytlin, 22]

- two and three point functions of twisted BPS operators
[Beccaria et al., 20, Billo et al., 22, Korchemsky, Testa, 25]



Correlation functions for the ./'=2 theory from

localisation
- BPS (vacuum) sector v = diag(1n,,w 1n,, .. il 1y.)
O (x) = \/%TT Z(x) untwisted Al = A =g
o g e

+ two-point functions from localisation [Beccaria et al., 20, Billo et al., 22] + perturbative

computations by [Galvagno, Preti, 20]

Gy

0 ~ (0
(0" () 0 (y)) = T — gl G = ¢N*
(o) det(1 — s4 Kyi1)
(@) 3@y — G (@) _ (~(0) o Kot
O @0 W) = GO et = sa Ki)
t
K, = K" with X(t) = —— Sq = sin’ a




Correlation functions for the ./'=2 theory from
localisation

+ three-point functions [Billo, Frau, Lerda, Pini, Vallarino, 22; Korchemsky, Testa, 25]

<Ol(€041)(x) Oéaz)(y) @]()o@)(z» \/% C}i’ozy;ag,ag)

normalised three point function: - = L = T 5
V(0:0(0,0)(0,0,) VKN |z —2**y — 2|

extremal : p=k+ /¢

conserved Zy charge: a3=a;+a; mod K
%) Croprees) = opr) o) ofe)
S
¢ k
/ C(a) _ det(l — SaKE) ., ra
6 \/det(l — 5o Kyp_1) det(1 — s, Kpi1) Sq = SIN d
0" (y) 0 0L (z)

- 1f the twists are absent (a; = 0) the structure constant is trivial, the same as for BPS
operators in N=4 SYM

- the results look very close to the octagon expression. Can they be obtained from integrability?



Correlation functions for the N=2 theory from
integrability

[Ferrando, Komatsu, Lefundes, D.S., 25]

-+ hexagon decomposition with psu(2|2) twist insertions: det(1 — s,Ky)
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- different factors in the structure constant have different origins:

C’,i,oZ]’DO‘Q’a?’) = (bridge) x (wrapping) x (bridge-like)

l l (bridge) = det (1 — s, Ky) det (1 — s,,Ky)
(bridge-like) = det (1 — 5,,K,)

- the bridge contribution can be computed similarly to the octagon
- the wrapping and bridge-like black rings represent contact terms and require special treatment



Regulating the singularities in finite volume

- evaluate the wrapping and bridge-like from contact terms, when rapidities on different
bridges coincide (a similar procedure suggested by [Basso, IGST21] and employed 1n [Basso,

Georgoudis, Klemenchuk Sueiro, 22]):

- represent the square of the structure constant as a genus-two closed surface with twist insertions

- cut the surface differently along mirror (dotted) lines

- ~.
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C(al7a27a3) -
k.t.p

p=k+/¢

G(u,v,w) G(u,v,w)

Ry =rg+rp, Ro=r¢+rk, B =71 +71p — 00 volume regulators for the three legs



Regulating the singularities in finite volume: bridge

- transporting a magnon form one hexagon to the other with a phase factor e¥?(®) ¢ :

- taking the product of the two “mirror pants™ gives the one-magnon bridge contribution

. [d ~ o .~ . [d ~
C,0,0 = lim Z/—u,ua(u) e tEa(u) Té‘”) (1 _ e iPa(w)re _ oipa(u)re 4 1) _i 22/% e~ (Fa(u) B,
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T \ /
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T(*) = STr, 7 = 4as, rapidly oscillating;

vanish when integrated with r, — oo

> 2
+ sum over any number of magnons: square of the bridge contribution ) Ci.00) = (Béo‘”)

n=0



Regulating the singularities in finite volume: wrapping

- start with two magnons on two different bridges, e.g.

Q(u,v) _ Ra Sba(U,U) Ka . eiﬁb(v)m —e —ipg (u)re 4+ 61(pb(’u) Da(w))re Raq ab(uav) Ka

explicitly: gbgu “§ Zba Eva u; K2 =1
> _ FaQab\h V) Ra  —ipy(v)re _ gipa(w)re | oi(Ba(u)=pp(v))re Fra Oballs W) Fa
G(u,v) e (0.0 e e +e hos (. 0)

- we order the contours of integration on the three bridges such that Imu>Imv>Imnw

- only one of the terms survives when we close the contour of integration of v in the u.h.p.
and catch the double pole at u = v from h2 (u, V)

C(l LO) = rlgnoo

Z / d’LL d'UILL (’U) e_gga(u)+i(ﬁb(v)_ﬁa(U))TE STrab 7'6?2 Sab(u 'U) Tb Sab(u ’U)
)2 al hi (v, u)

a,b=1

Z/ du o~ LEa(u) (=10, STrep 752 Sap(u,v) 7 Sab(u, v))
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Regulating the singularities in finite volume: wrapping

- any number of magnons — result for the (square of the) wrapping contribution
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Sap(u,v) : Beisert’s scattering matrix for mirror bound states a, b

- a comparable (but more complicated) structure for fishnets [Ferrando, Olivucci, unpublished]

- conjecture (checked up to n = 3): the (inverse square of the) wrapping contribution can be
written as a product of Fredholm determinants

9
(Wf(a)> = det(1 — s K1) det(1 — s Kpy1)

° usese.g. B
21 STry, 87! 0uSap = ka(u) (1 — Hyp) 1y, ko £, = —2eFFay,

2 STrap Sy 0u0uSab = Pl () py(v) (1 — Hep) po = iln(zl~ /zlal)

checked with the code of [De Leeuw, Eden, Sfondrini, 20]



Regulating the singularities in finite volume: bridge-like }%75\

- result for the bridge-like contribution from the contact terms below (and those rotated by x)
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- computed by closing the contours over v and w and taking the poles at (b, v) = (a, u)
and (c,w) = (a, u)

G 2
- all magnon contribution: > Conmmy 2 (BS) B{*) = det(1 — 54,K})
n=0

factorisation of different contributions —— final result as a product of Fredholm determinants



Summary and outlook

- We showed that some correlation functions of local gauge invariant operators obtained by

localisation techniques in terms of Fredholm determinants can be reproduced by
integrability techniques as well

- This opens the possibility to connect the two approaches, which have different ranges of

applicability; one could use localisation to investigate the conjectures about integrability of
the /" = 2 SYM quiver theory with different gauge couplings [Pomoni et al]

+ One of the main outcomes of our work is an all-loop, all-magnon expression for the

wrapping corrections for the structure constants of the twisted BPS operators

«  We hope this results will help to develop a systematic understanding of the wrappings

corrections and the TBA for more generic structure constants, for example by
considering twists that break supersymmetry

- It would be 1nstructive to interpret these results in the QSC language

- Recently, the hexagon approach was set up for su(2) non-BPS operators at the tree-level

in the /' =2 SYM Z, quiver theory [le Plat, Skrzypek, 25]; it would be useful to have
higher-loop checks against perturbative computations

- Replace the sum over mirror magnons by SoV integrals? [Bercini, Homrich, Vieira, 22;

Bargheer et al, 25]
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